7 research outputs found

    Automated Design Space Exploration for optimised Deployment of DNN on Arm Cortex-A CPUs

    Full text link
    The spread of deep learning on embedded devices has prompted the development of numerous methods to optimise the deployment of deep neural networks (DNN). Works have mainly focused on: i) efficient DNN architectures, ii) network optimisation techniques such as pruning and quantisation, iii) optimised algorithms to speed up the execution of the most computational intensive layers and, iv) dedicated hardware to accelerate the data flow and computation. However, there is a lack of research on cross-level optimisation as the space of approaches becomes too large to test and obtain a globally optimised solution. Thus, leading to suboptimal deployment in terms of latency, accuracy, and memory. In this work, we first detail and analyse the methods to improve the deployment of DNNs across the different levels of software optimisation. Building on this knowledge, we present an automated exploration framework to ease the deployment of DNNs. The framework relies on a Reinforcement Learning search that, combined with a deep learning inference framework, automatically explores the design space and learns an optimised solution that speeds up the performance and reduces the memory on embedded CPU platforms. Thus, we present a set of results for state-of-the-art DNNs on a range of Arm Cortex-A CPU platforms achieving up to 4x improvement in performance and over 2x reduction in memory with negligible loss in accuracy with respect to the BLAS floating-point implementation

    DLAS: An Exploration and Assessment of the Deep Learning Acceleration Stack

    Full text link
    Deep Neural Networks (DNNs) are extremely computationally demanding, which presents a large barrier to their deployment on resource-constrained devices. Since such devices are where many emerging deep learning applications lie (e.g., drones, vision-based medical technology), significant bodies of work from both the machine learning and systems communities have attempted to provide optimizations to accelerate DNNs. To help unify these two perspectives, in this paper we combine machine learning and systems techniques within the Deep Learning Acceleration Stack (DLAS), and demonstrate how these layers can be tightly dependent on each other with an across-stack perturbation study. We evaluate the impact on accuracy and inference time when varying different parameters of DLAS across two datasets, seven popular DNN architectures, four DNN compression techniques, three algorithmic primitives with sparse and dense variants, untuned and auto-scheduled code generation, and four hardware platforms. Our evaluation highlights how perturbations across DLAS parameters can cause significant variation and across-stack interactions. The highest level observation from our evaluation is that the model size, accuracy, and inference time are not guaranteed to be correlated. Overall we make 13 key observations, including that speedups provided by compression techniques are very hardware dependent, and that compiler auto-tuning can significantly alter what the best algorithm to use for a given configuration is. With DLAS, we aim to provide a reference framework to aid machine learning and systems practitioners in reasoning about the context in which their respective DNN acceleration solutions exist in. With our evaluation strongly motivating the need for co-design, we believe that DLAS can be a valuable concept for exploring the next generation of co-designed accelerated deep learning solutions
    corecore