2 research outputs found

    Expansión óptima de sistemas de transmisión considerando ataques intencionales y estabilidad angular

    Get PDF
    En los sistemas eléctricos de potencia una de las principales problemáticas es tener una correcta planeación de expansión del sistema de transmisión (TEP), tomando en cuenta ataques intencionales que en la actualidad son más comunes debido a que las líneas de transmisión tienen un área geográfica muy extensa. Se enmarca un análisis de reforzamiento de los sistemas de potencia (SEP) a través de una optimización que permita ver que líneas de transmisión se deben aumentar en los sistemas analizados. Para este estudio se implementó una optimización en donde permite ver las líneas de transmisión candidatas con un objetivo de planeación de diez años, a través de flujos óptimos de potencia DC, donde se plantearon parámetros de análisis de solo considerar potencia activa y voltaje modular de 1 p.u en todas las barras de los sistemas. Los ataques intencionales realizados se lo hicieron aleatoriamente en los dos sistemas analizados donde se realiza un ranking de índice de contingencias que permite saber cuál de estas contingencias pueden afectar más al sistema. Finalmente se realizó un análisis a la estabilidad de los sistemas comparando antes, durante y después de las contingencias realizadas en donde se comprobó que aplicando las optimizaciones los sistemas se mantienen estables a pesar de los ataques intencionales realizados.In electrical power systems, one of the main problems is to have a correct transmission system expansion planning (TEP), taking into account intentional attacks that are currently more common because that transmission lines have a very geographic area extensive. An analysis of reinforcement of the power systems (SEP) is framed through an optimization that allows seeing which transmission lines should be increased in the analyzed systems. For this study, an optimization was implemented where it allows seeing the candidate transmission lines with a planning objective of ten years, through optimal flows of DC power where analysis parameters were proposed to only consider active power and modular voltage of 1 p.u on all bars of the systems. The intentional attacks carried out were done randomly in the two systems analyzed, where a contingency index ranking is carried out that allows knowing which of these contingencies can affect the system the most. Finally, an analysis of the stability of the systems was carried out, comparing before, during and after the contingencies carried out, where it was found that by applying the optimizations the systems remain stable despite the intentional attacks carried out

    Influence of Battery Energy Storage Systems on Transmission Grid Operation With a Significant Share of Variable Renewable Energy

    Get PDF
    The generation mix of Portugal now contains a significant amount of variable renewable energy sources (RES) and the amount of RES is expected to grow substantially. This has led to concerns being raised regarding the security of the supply of the Portuguese electric system as well as concerns relating to system inertia. Deploying and efficiently using various flexibility options is proposed as a solution to these concerns. Among these flexibility options proposed is the use of battery energy storage systems (BESSs) as well as relaxing system inertia constraints such as the system nonsynchronous penetration (SNSP). This article proposes a stochastic mixed-integer linear programming problem formulation, which examines the effects of deploying BESS in a power system. The model is deployed on a real-world test case and results show that the optimal use of BESS can reduce system costs by as much as 10% relative to a baseline scenario and the costs are reduced further when the SNSP constraint is relaxed. The amount of RES curtailment is also reduced with the increased flexibility of the power system through the use of BESS. Thus, the efficiency of the Portuguese transmission system is greatly increased by the use of flexibility measures, primarily the use of BESS.©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.fi=vertaisarvioitu|en=peerReviewed
    corecore