1,808 research outputs found

    Optimal Control of Sweeping Processes in Robotics and Traffic Flow Models

    Get PDF
    The paper is mostly devoted to applications of a novel optimal control theory for perturbed sweeping/Moreau processes to two practical dynamical models. The first model addresses mobile robot dynamics with obstacles, and the second one concerns control and optimization of traffic flows. Describing these models as controlled sweeping processes with pointwise/hard control and state constraints and applying new necessary optimality conditions for such systems allow us to develop efficient procedures to solve naturally formulated optimal control problems for the models under consideration and completely calculate optimal solutions in particular situations

    A Rotating-Grid Upwind Fast Sweeping Scheme for a Class of Hamilton-Jacobi Equations

    Full text link
    We present a fast sweeping method for a class of Hamilton-Jacobi equations that arise from time-independent problems in optimal control theory. The basic method in two dimensions uses a four point stencil and is extremely simple to implement. We test our basic method against Eikonal equations in different norms, and then suggest a general method for rotating the grid and using additional approximations to the derivatives in different directions in order to more accurately capture characteristic flow. We display the utility of our method by applying it to relevant problems from engineering

    Optimal control of sweeping processes in unmanned surface vehicle and nanoparticle modeling

    Full text link
    This paper addresses novel applications to practical modeling of the newly developed theory of necessary optimality conditions in controlled sweeping/Moreau processes with free time and pointwise control and state constraints. Problems of this type appear, in particular, in dynamical models dealing with unmanned surface vehicles (USVs) and nanoparticles. We formulate optimal control problems for a general class of such dynamical systems and show that the developed necessary optimality conditions for constrained free-time controlled sweeping processes lead us to designing efficient procedures to solve practical models of this class. Moreover, the paper contains numerical calculations of optimal solutions to marine USVs and nanoparticle models in specific situations. Overall, this study contributes to the advancement of optimal control theory for constrained sweeping processes and its practical applications in the fields of marine USVs and nanoparticle modeling

    Simulating use cases for the UAH autonomous electric car

    Get PDF
    2019 IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand, 27-30 Oct. 2019This paper presents the simulation use cases for the UAH Autonomous Electric Car, related with typical driving scenarios in urban environments, focusing on the use of hierarchical interpreted binary Petri nets in order to implement the decision making framework of an autonomous electric vehicle. First, we describe our proposal of autonomous system architecture, which is based on the open source Robot Operating System (ROS) framework that allows the fusion of multiple sensors and the real-time processing and communication of multiple processes in different embedded processors. Then, the paper focuses on the study of some of the most interesting driving scenarios such as: stop, pedestrian crossing, Adaptive Cruise Control (ACC) and overtaking, illustrating both the executive module that carries out each behaviour based on Petri nets and the trajectory and linear velocity that allows to quantify the accuracy and robustness of the architecture proposal for environment perception, navigation and planning on a university Campus.Ministerio de Economía y CompetitividadComunidad de Madri
    corecore