10,736 research outputs found

    Integrating Closed-loop Supply Chains and Spare Parts Management at IBM

    Get PDF
    Ever more companies are recognizing the benefits of closed-loop supplychains that integrate product returns into business operations. IBMhas been among the pioneers seeking to unlock the value dormant inthese resources. We report on a project exploiting product returns asa source of spare parts. Key decisions include the choice of recoveryopportunities to use, the channel design, and the coordination ofalternative supply sources. We developed an analytic inventory controlmodel and a simulation model to address these issues. Our results showthat procurement cost savings largely outweigh reverse logistics costsand that information management is key to an efficient solution. Ourrecommendations provide a basis for significantly expanding the usageof the novel parts supply source, which allows for cutting procurementcosts.supply chain management;reverse logistics;product recovery;inventory management;service management

    Maintenance optimization of a production system with buffercapacity

    Get PDF
    Marketing;Optimization;produktieleer/ produktieplanning

    Production planning and control of closed-loop supply chains

    Get PDF
    More and more supply chains emerge that include a return flow of materials. Many original equipment manufacturers are nowadays engaged in the remanufacturing business. In many process industries, production defectives and by-products are reworked. These closed-loop supply chains deserve special attention. Production planning and control in such hybrid systems is a real challenge, especially due to increased uncertainties. Even companies that are engaged in remanufacturing operations only, face more complicated planning situations than traditional manufacturing companies.We point out the main complicating characteristics in closed-loop systems with both remanufacturing and rework, and indicated the need for new or modified/extended production planning and control approaches. An overview of the existing scientific contributions is given. It appears that we only stand at the beginning of this line of research, and that many more contributions are needed and expected in the future.closed-loop supply chains;Production planning and control

    On the alignment of lot sizing decisions in a remanufacturing system in the presence of random yield

    Get PDF
    In the area of reverse logistics, remanufacturing has been proven to be a valu- able option for product recovery. In many industries, each step of the productsā€™ recovery is carried out in lot sizes which leads to the assumption that for each of the different recovery steps some kind of fixed costs prevail. Furthermore, holding costs can be observed for all recovery states of the returned product. Although several authors study how the different lot sizes in a remanufacturing system shall be determined, they do not consider the specificity of the remanufacturing process itself. Thus, the disassembly operations which are always neglected in former analyses are included in this contribution as a specific recovery step. In addition, the assumption of deterministic yields (number of reworkable compo- nents obtained by disassembly) is extended in this work to study the system behavior in a stochastic environment. Three different heuristic approaches are presented for this environment that differ in their degree of sophistication. The least sophisticated method ignores yield randomness and uses the expected yield fraction as certainty equivalent. As a numerical experiment shows, this method already yields fairly good results in most of the investigated problem instances in comparison to the other heuristics which incorporate yield uncertainties. How- ever, there exist instances for which the performance loss between the least and the most sophisticated heuristic amounts to more than 6%.reverse logistics, remanufacturing, lot sizing, disassembly, random yield

    An approximate approach for the joint problem of level of repair analysis and spare parts stocking

    Get PDF
    For the spare parts stocking problem, generally METRIC type methods are used in the context of capital goods. A decision is assumed on which components to discard and which to repair upon failure, and where to perform repairs. In the military world, this decision is taken explicitly using the level of repair analysis (LORA). Since the LORA does not consider the availability of the capital goods, solving the LORA and spare parts stocking problems sequentially may lead to suboptimal solutions. Therefore, we propose an iterative algorithm. We compare its performance with that of the sequential approach and a recently proposed, so-called integrated algorithm that finds optimal solutions for twoechelon, single-indenture problems. On a set of such problems, the iterative algorithm turns out to be close to optimal. On a set of multi-echelon, multi-indenture problems, the iterative approach achieves a cost reduction of 3%on average (35%at maximum) as compared to the sequential approach. Its costs are only 0.6 % more than those of the integrated algorithm on average (5 % at maximum). Considering that the integrated algorithm may take a long time without guaranteeing optimality, we believe that the iterative algorithm is a good approach. This result is further strengthened in a case study, which has convinced Thales Nederland to start using the principles behind our algorithm

    The Deterministic Impulse Control Maximum Principle in Operations Research: Necessary and Sufficient Optimality Conditions (replaces CentER DP 2011-052)

    Get PDF
    This paper considers a class of optimal control problems that allows jumps in the state variable. We present the necessary optimality conditions of the Impulse Control Maximum Principle based on the current value formulation. By reviewing the existing impulse control models in the literature, we point out that meaningful problems do not satisfy the sufficiency conditions. In particular, such problems either have a concave cost function, contain a fixed cost, or have a control-state interaction, which have in common that they each violate the concavity hypotheses used in the sufficiency theorem. The implication is that the corresponding problem in principle has multiple solutions that satisfy the necessary optimality conditions. Moreover, we argue that problems with fixed cost do not satisfy the conditions under which the necessary optimality conditions can be applied. However, we design a transformation, which ensures that the application of the Impulse Control Maximum Principle still provides the optimal solution. Finally, we show for the first time that for some existing models in the literature no optimal solution exists.Impulse Control Maximum Principle;Optimal Control;discrete continuous system;state-jumps;present value formulation.

    Dynamic Cooperative and Non-cooperative Games under Stochastic Uncertainty: Optimal Strategies, Stability and Control

    Get PDF
    In this thesis, we have studied different models of cooperative and non-cooperative games in a dynamic framework. In cooperative games, we have studied the benefit of coalition formation in different problems, such as coordinated maintenance, coordinated replenishment, wind power production, and linear production games. Through these chapters, we have designed allocation rules to distribute the total income of the coalitions among its members in a fair and stable way, thereby encouraging cooperation between the players. In the chapters related to non-cooperative games, we have investigated dynamic games with various characteristics, including stochasticity, discreteness, and with both complete and incomplete information. The primary focus of these chapters is to determine whether or not an equilibrium exists, namely, if there exist strategies in which all the players are making their best decisions and do not benefit from changing the strategy. In this thesis, we have tackled the problems we set out to solve by using different disciplines. We have applied not only concepts from game theory but also from control theory, optimization, probability, and data learning, among others. By combining these disciplines, we enable decision-makers in the games to learn from their environment and make smarter decisions
    • ā€¦
    corecore