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Abstract

This paper considers a class of optimal control problems that allows jumps in the state
variable. We present the necessary optimality conditions of the Impulse Control Maximum
Principle based on the current value formulation. By reviewing the existing impulse control
models in the literature, we point out that meaningful problems do not satisfy the sufficiency
conditions. In particular, such problems either have a concave cost function, contain a fixed
cost, or have a control-state interaction, which have in common that they each violate the
concavity hypotheses used in the sufficiency theorem. The implication is that the corre-
sponding problem in principle has multiple solutions that satisfy the necessary optimality
conditions. Moreover, we argue that problems with fixed cost do not satisfy the conditions
under which the necessary optimality conditions can be applied. However, we design a trans-
formation, which ensures that the application of the Impulse Control Maximum Principle
still provides the optimal solution. Finally, we show for the first time that for some existing
models in the literature no optimal solution exists.

Key words: Impulse Control Maximum Principle, Optimal Control, discrete continuous
system, state-jumps, present value formulation

JEL-codes: C61, D90

1 Introduction

For many problems in the area of economics and operations research it is realistic to allow for
jumps in the state variable. This paper therefore considers optimal control models in which
the time moment of these jumps as well as the size of the jumps are taken as (new) decision
variables. An example is Blaquière (1979) that deals with optimal maintenance and life time
of machines. Here the firm has to decide when a certain machine has to be repaired (impulse
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control variable), and it has to determine the rate of maintenance expenses (ordinary control
variable), so that the profit is maximized over the planning period. Blaquière (1977a; 1977b;
1979; 1985) extends the standard theory on optimal control by deriving a Maximum Principle,
the so called Impulse Control Maximum Principle, that gives necessary (and sufficient) optimal-
ity conditions for solving such problems. Like Blaquière (1977a; 1977b; 1979; 1985), we consider
a framework where the number of jumps is not restricted. This distinguishes our approach from,
e.g., Liu et al. (1998), Augustin (2002, pp. 71-81) and Wu and Teo (2006), where the number
of jumps is fixed (i.e. is taken as given).

This contribution focuses on deterministic impulse control problems that are analyzed by using
the Impulse Control Maximum Principle. This implies that we do not consider stochastic im-
pulse control problems. This excludes the theory of real options (see Dixit and Pindyck (1994))
and also the theory of Quasi-Variational Inequalities (QVI) (see Bensoussan and Lions (1984)).
It is well known that in a stochastic framework these methodologies are much more useful than
the stochastic Maximum Principle. Other insightful QVI references include Bensoussan et al.
(2006) on an inventory model employing an (s, S) policy and Øksendal and Sulem (2007).

The contribution of this paper is fourfold. First, we give a correct formulation of the nec-
essary optimality conditions of the Impulse Control Maximum Principle based on the current
value formulation. In this way we correct Feichtinger and Hartl (1986, appendix 6) and Kort
(1989, pp. 62-70). Second, by reviewing the existing impulse control models in the literature,
we point out that meaningful problems do not satisfy the sufficiency conditions. In particular,
such problems either have a concave cost function, contain a fixed cost, or have a control-state
interaction that each violate the concavity hypotheses used in the sufficiency theorem. The
implication of not satisfying the sufficiency conditions is that the corresponding problem in
principle has multiple solutions that satisfy the necessary optimality conditions. In many cases,
these multiple solutions can be represented by a so called tree-structure (see, e.g., Luhmer
(1986), Kort (1989), Chahim et al. (2011). Third, we show for the first time that several exist-
ing problems (Blaquière (1977a; 1977b; 1979), Kort (1989, pp. 62-70)) do not have an optimal
solution. In particular, the solution of these problems contain an interval where a singular arc
is approximated as much as possible by applying impulse chattering. Fourth, we observe that
problems with a fixed cost have the property that the cost function is not a C1 function i.e. it is
not continuously differentiable. This implies that in principle, also the necessary optimality con-
ditions do not hold, although they were applied in Luhmer (1986), Gaimon1985; 1986a; 1986b
and Chahim et al. (2011) leading to correct solutions. This paper provides a transformation,
which ensures that the Impulse Control Maximum Principle can still be applied to problems
with a fixed cost

This paper is organized as follows. Section 2 gives the general formulation of an impulse control
model with discounting and presents the correct Impulse Control Maximum Principle in cur-
rent value formulation (i.e. the necessary optimality conditions). Further we give the sufficient
conditions for optimality and provide the transformation which makes clear why the Impulse
Control Maximum Principle can still be applied to problems with a fixed cost. In Section 3
we classify existing economic models involving impulse control, show why optimal solutions for
some of them do not exist, and discuss the problems that arise with the sufficiency conditions.
Section 4 contains our conclusion and further remarks.

2



2 Impulse control

The theory of optimal control has its origin in physics and engineering where discounting cash
flows does not occur. For this reason Blaquière (1977a; 1977b; 1979; 1985) derived his Maxi-
mum Principle considering impulse control problems without using current value Hamiltonians.
Instead, he presents his Maximum Principle in the present value Hamiltonian form.

Section 2.1 transforms Blaquière present value analysis to a current value one, whereas Sec-
tion 2.2 presents sufficiency conditions. Section 2.3 considers a subclass of impulse control
problems, where the cost function contains a fixed cost.

2.1 Necessary Conditions

In this section we derive necessary optimality conditions for impulse control in current value
Hamiltonian form. In doing so, we correct the necessary optimality conditions for impulse con-
trol given in Feichtinger and Hartl (1986, appendix 6). Their theorem is based on the current
value present value transformation. However, applying it here turns out to be not as straight-
forward as usual.

A general formulation of the impulse control problem with discounting is:

max
u,N,τi,vi

∫ T

0
e−rtF (x(t),u(t), t)dt +

N
∑

i=1

e−rτiG(x(τ−i ),vi, τi) + e−rTS(x(T+)). (IC)

s.t.
ẋ(t) = f(x(t),u(t), t), for t /∈ {τ1, . . . , τN},

x(τ+i )− x(τ−i ) = g(x(τ−i ),vi, τi), for i ∈ {1, . . . , N},
x ∈ R

n, u ∈ Ωu, vi ∈ Ωv, and x(0−) = x0, τi ∈ [0, T ].

Here, x is the state variable, u is an ordinary control variable and vi is the impulse control
variable, where x and u are piecewise continuous functions of time1. Future cash flows are
discounted at a constant rate r leading to the discount factor e−rt. The number of jumps is
denoted by N , τi is the time moment of the i-th jump, and τ−i and τ+i represent the time
moment just before and just after the jump, respectively (i.e. x(τ−i ) and x(τ+i ) represent the
left-hand and right-hand limit of x, respectively). The terminal time or horizon date of the
system or process is denoted by T > 0, and T+ stands for the time moment just after T . The
profit of the system is given by F (x(t),u(t), t), G(x(t),vi, t) is the profit function associated
with the i-th jump, and S(x(T+)) is the salvage value, i.e. the total costs or profit associ-
ated with the system after time T . Finally, f(x(t),u(t), t) describes the continuous change of
the state variable over time between the jump points and g(x(t),vi, t) is a function that rep-
resents the instantaneous (finite) change of the state variable when there is an impulse or jump.

We assume that the domains, Ωu and Ωv are bounded convex sets. Further we impose that F ,
f , g and G are continuously differentiable in x on R

n and vi on Ωv, S(x(T
+)) is continuously

differentiable in x(T+) on R
n, and that g and G are continuous in τ . Finally, when there is no

impulse or jump, i.e. vi = 0, we assume that

g(x(t), 0, t) = 0,

1Note that the necessary conditions also hold for measurable controls. We restrict ourselves to piecewise con-
tinuous functions since this is needed for sufficiency. Applications typically have piecewise continuous functions.
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Figure 1: Solution of Impulse Control system

for all x and t. A typical solution for an Impulse Control problem is presented in Figure 1.

Let us define the present value Hamiltonian

Ham(x(t),u(t),µ(t), t) = e−rtF (x(t),u(t), t) + µ(t)f(x(t),u(t), t),

and the present value Impulse Hamiltonian

IHam(x(t),vi,µ(t), t) = e−rtG(x(t),vi, t) + µ(t)g(x(t),vi, t),

where µ(t) denotes the present value costate variable. The following theorem presents the
necessary optimality conditions associated with the impulse control problem defined in (IC).

Theorem 2.1 (Impulse Control Maximum Principle (present value)).
Let (x∗(t),u∗(t), N, τ∗1 , . . . , τ

∗

k , v
1∗, . . . , vk∗) be an optimal solution for the impulse control prob-

lem defined in (IC). Then there exists an adjoint variable µ such that the following conditions
hold:

u∗(t) = arg max
u∈Ωu

Ham(x∗(t),u,µ(t), t), (1)

µ̇(t) = −
∂Ham

∂x
(x∗(t),u(t),µ(t), t). (2)

At the impulse or jump points, it holds that

∂IHam

∂vi
(x∗(τ∗−i ),vi,µ(τ∗+i ), τ∗i )(v

i − vi∗) ≤ 01, (3)

µ(τ∗+i )− µ(τ∗−i ) = −
∂IHam

∂x
(x∗(τ∗−i ),vi∗,µ(τ∗+i ), τ∗i ), (4)

Ham(x∗(τ∗+i ),u∗(τ∗+i ),µ(τ∗+i ), τ∗i ))−Ham(x∗(τ∗−i ),u∗(τ∗−i ),µ(τ∗−i ), τ∗i )

−
∂IHam

∂τ
(x∗(τ∗−i ), vi∗,µ(τ∗+i ), τ∗i )







> 0 for τ∗i = 0
= 0 for τ∗i ∈ (0, T )
< 0 for τ∗i = T.

(5)
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For all points in time at which there is no jump, i.e. t 6= τi (i = 1, . . . k), it holds that

∂IHam

∂vi
(x∗(t),0,µ(t), t)vi ≤ 0. (6)

At the horizon date the transversality condition

µ(T+) = e−rT ∂S

∂x
(x∗(T+)) (7)

holds.

Proof: see Blaquière (1977a; 1985) or Rempala and Zabczyk (1988)

In Blaquière (1977a; 1985) it is assumed that the Impulse Hamiltonian is concave in v. In this
case (3) and (6) are replaced by

vi∗ = arg max
vi∈Ωv

IHam(x∗(τ∗−i ),vi,µ(τ∗+i ), τ∗i ),

0 = arg max
vi∈Ωv

IHam(x∗(t),0,µ(t), t).

Next we determine the current value formulation of Theorem 2.1. By doing this we correct
Feichtinger and Hartl (1986, appendix 6), in which the current value version of condition (5) is
wrongly stated. First, we define the current value Hamiltonian

Ham(x(t),u(t),λ(t), t) = F (x(t),u(t), t) + λ(t)f(x(t),u(t), t),

and the current value Impulse Hamiltonian

IHam(x(t),vi,λ(t), t) = G(x(t),vi, t) + λ(t)g(x(t),vi, t).

with λ(t) the current value costate variable. The following theorem presents necessary optimal-
ity conditions to solve the impulse control problem defined in (IC), based on the current value
approach.

Theorem 2.2 (Impulse Control Maximum Principle (current value)).
Let (x∗(t),u∗(t), N, τ∗1 , . . . , τ

∗

k , v
1∗, . . . , vk∗) be an optimal solution for the impulse control prob-

lem defined in (IC). Then there exists an adjoint variable λ such that the following conditions
hold:

u∗(t) = arg max
u∈Ωu

Ham(x∗(t),u,λ, t), (8)

λ̇(t) = rλ−
∂Ham

∂x
(x∗(t),u,λ, t). (9)

At the impulse or jump points, it holds that:

∂IHam

∂vi
(x∗(τ∗−i ),vi,λ(τ∗+i ), τ∗i )(v

i − vi∗) ≤ 0, (10)

λ(τ∗+i )− λ(τ∗−i ) = −
∂IHam

∂x
(x∗(τ∗−i ), vi∗,λ(τ∗+i ), τ∗i ), (11)

Ham(x∗(τ∗+i ),u∗(τ∗+i ),λ(τ∗+i ), τ∗i ))−Ham(x∗(τ∗−i ), u∗(τ∗−i ),λ(τ∗−i ), τ∗i )

−

[

∂G

∂τ
(x∗(τ∗−i ),vi∗,λ(τ∗+i ), τ∗i )− rG(x∗(τ∗−i ),vi∗,λ(τ∗+i ), τ∗i )

]

−λ(τ+i )
∂g

∂τ
(x(τ−i ),vi, τi)







> 0 for τ∗i = 0
= 0 for τ∗i ∈ (0, T )
< 0 for τ∗i = T.

(12)
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For all points in time at which there is no jump, i.e. t 6= τ∗i (i = 1, . . . k), it holds that:

∂IHam

∂vi
(x∗(t),0,λ(t), t)vi ≤ 0. (13)

At the horizon date the transversality condition

λ(T+) =
∂S

∂x
(x∗(T+)) (14)

holds.

Proof: The relation between present value and current value Hamiltonian, Impulse Hamilto-
nian and co-state variables is given by

Ham = e−rtHam,

IHam = e−rtIHam,

and
µ(t) = e−rtλ(t).

Under these transformations, conditions (8)-(11),(13) and (14) are equal to conditions (1)-
(4),(6) and (7). In this proof we show that (12) is the current value equivalent of the analogous
condition (5) derived by Blaquière. From the definitions of IHam and IHam we obtain that

e−rtIHam(x(t),vi,λ(t), t) = e−rtG(x(t),vi, t) + e−rtλ(t)g(x(t),vi, t)

= e−rtG(x(t),vi, t) + µ(t)g(x(t),vi, t)

= IHam(x(t),vi,µ(t), t)

Combining this with (5) we get for τi ∈ (0, T ):

Ham+ −Ham− = e−rt(
∂G(x(t),vi, t)

∂t
− rG(x(t),vi, t)) + µ(t)

∂g(x(t),vi, t)

∂t
,

which implies that

Ham+ −Ham− = ert(e−rt(
∂G(x(t),vi, t)

∂t
− rG(x(t),vi, t)) + e−rtλ(t)

∂g(x(t),vi, t)

∂t
)

= (
∂G(x(t),vi, t)

∂t
− rG(x(t),vi, t)) + λ(t)

∂g(x(t),vi, t)

∂t
.

This is condition (12) for τ∗i ∈ (0, T ). The other two cases, τ∗i = 0 and τ∗i = T , follow the same
steps.

2.2 Sufficiency conditions

The following theorem can be found in Seierstad and Sydsæter (1987, pp. 198-199).

Theorem 2.3 (Sufficient Conditions for Impulse Control). Let there be a feasible solution,
(x∗(t),u∗(t), N, τ∗1 , . . . , τ

∗

k , v
1∗, . . . , vk∗), for the impulse control problem (IC) and a piecewise

continuous costate trajectory, so that the necessary optimality conditions of Theorem 2.2 hold.
When the maximized Hamiltonian function Ham0 = maxuHam(x,u,λ, t) is concave in x for
all (λ(t), t), the IHam, concave in (x,v) for all t and S(x) concave in x, then that solution,
(x∗(t),u∗(t), N, τ∗1 , . . . , τ

∗

k , v
1∗, . . . , vk∗), is optimal.

For the proof of this theorem we refer to Theorem 1 in Seierstad (1981), which is equivalent to
the theorem stated above. However, we will show in Section 3 that this result is not very useful
since most (relevant) problems given in the literature do not fulfil these conditions.
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2.3 Impulse control: G including constant term (i.e. a fixed cost)

When there is some fixed cost involved in the impulse cost function, the function G has a jump
discontinuity at point vi = 0. The implication is that G is not continuously differentiable.
Consequently, strictly speaking the Impulse Control Maximum Principle cannot be applied.
However, the Impulse Control Maximum Principle has been applied a few times while ignor-
ing this continuity requirement (see, e.g., Luhmer (1986), Gaimon(1985; 1986a; 1986b) and
Chahim et al. (2011)). In this section we show that by applying some transformation, a general
fixed cost problem can be represented by a problem with continuous cost function so that still
the necessary optimality conditions can be applied.

Reconsider the above general impulse control problem. For applying the Impulse Control Maxi-
mum Principle, zero needs to be in the set Ωv = [0, v̄] and g(x(τ−i ), 0, τi) = 0 (see e.g., Blaquière
(1977a; 1977b; 1979; 1985) and Seierstad and Sydsæter (1987)). Furthermore, the impulse cost
function needs to be continuously differentiable. As said before, this is not the case in the
specification where G is discontinuous because of a fixed cost term (for simplicity we delete the
superscript i in vi):

G(x, v, τ) =

{

0 for v = 0
K(τ) + α(v, τ)v for v > 0,

where K(τ) > 0. Clearly G is lower semi-continuous.

The idea is to approximate the linear impulse cost function K + αv by a continuously dif-
ferentiable one that assumes the same value for v > ε, where we let ε go to zero. A possible
specification would be

Gε(x, v, τ) =

{

−K(τ)
ε2

v2 + (2K(τ)
ε

+ α(v, τ))v for v ∈ [0, ε]
K(τ) + α(v, τ)v for v > ε.

Letting ε go to zero it follows that Gε approaches G. Other specifications of Gε(x, v, τ) are also

possible, but the common denominator is that lim
ε→0

∂

∂v
Gε(x, 0, τ) = ∞. The argument is that

the optimal solution of a problem with cost G will never have ”very small” jumps because of the
fixed costs. Then, for ε small enough, Gε will always give the same cost as G and the optimal
solutions will be the same. Hence, the necessary optimality conditions still hold for G with fixed
cost. The following lemma and proposition formalize these statements.

Lemma 2.4. Let 0 < ε1 < ε0 and let (xε, uε, vε) (for simplicity we omit τ and N) be an
optimal solution of the problem with cost function Gε, while (x∗, u∗, v∗) is an optimal solution
of problem (IC). Furthermore, we denote by J (x, u, v) the value of the objective function of the
original problem evaluated at (x, u, v) , and by Jε (x, u, v) the value of the objective function of
the approximated problem with cost function Gε evaluated at (x, u, v). Then

J(x, u, v) ≤ Jε1(x, u, v) ≤ Jε0(x, u, v), (15)

and also
J(x∗, u∗, v∗) ≤ Jε1(xε1 , uε1 , vε1) ≤ Jε0(xε0 , uε0 , vε0). (16)

Proof: The first result (15) follows directly from Gε0 ≤ Gε1 ≤ G, whereas (16) follows from
(15) and

Jε1(xε1 , uε1 , vε1) ≤ Jε0(xε1 , uε1 , vε1) ≤ Jε0(xε0 , uε0 , vε0).
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Proposition 2.5. Let (x∗, u∗, v∗) (for simplicity we omit τ and N) be an optimal solution
of problem (IC). Then the Impulse Control Maximum Principle provides necessary optimality
conditions, even though the model function G is not continuous. More precisely, if the optimal
solution is unique, it satisfies these necessary optimality conditions. Otherwise there is at least
one optimal solution for which this holds.

Proof: Let ε0 be some small positive number and let (xε0 , uε0 , vε0) be an optimal solution of the
problem with cost function Gε0 , which thus satisfies the necessary optimality conditions. Let
further viε0 be the smallest jump parameter in this optimal solution. If viε0 ≥ ε0, the proposition
automatically holds. If viε0 < ε0, choose a lower ε0, and check again if viε0 ≥ ε0. If yes we are
done, if not continue this procedure.

3 Classification of existing operations research models involving

impulse control

This section classifies existing operations research impulse control problems found in the litera-
ture. When considering impulse control problems in an operations research context, a common
feature is discounting. The resulting general impulse control problem (where for reasons of
exposition both the state and impulse control are one dimensional) can be represented by

max
u,vi,τi,N

∫ T

0
e−rtF (x(t), u(t), t)dt +

N
∑

i=1

e−rτiG(x(τ−i ), vi, τi) + e−rTS(x(T+)), (17)

s.t.

ẋ(t) = f(x(t), u(t), t), for t /∈ {τ1, . . . , τN},
x(τ+i )− x(τ−i ) = g(x(τ−i ), vi, τi), for i ∈ {1, . . . , N},
x ∈ R, u ∈ Ωu, vi ∈ Ωv, and x(0−) = x0, τi ∈ [0, T ].

For applying the Impulse Control Maximum Principle, zero needs to be in the set Ωv = [0,∞)
and g(x(τ−i ), 0, τi) = 0. The objective is typically to maximize profit or minimize cost. We
distinguish between

• linear impulse control problem, i.e. a problem where the impulse control variable occurs
linearly in the Impulse Hamiltonian, and no continuous control present (Case A)

• linear impulse control problem and continuous control present (Case B)

• non-linear impulse control problem and no continuous control present (Case C )

• non-linear impulse control problem and continuous control present (Case D)

In the linear impulse control case where no continuous control u is present (Case A), a typical
solution would be to reach some kind of singular arc by applying impulse control, but, if the
state equation contains some decay term (for instance δK(t) with δ the depreciation rate and
K(t) the capital stock), then it might be formally impossible to stay there. One has to use
some kind of impulse chattering, i.e. an infinitely large number of impulses of infinitely small
size. We elaborate on this when discussing the model by Blaquière (1977a; 1977b) in Section 3.1.

In the linear impulse control case where also a continuous control u is present (case B) and both
go into the same direction i.e. increase or decrease the state, the two controls (i.e. the ordinary
and impulse control) are in some sense substitutes to each other. Then one can distinguish the
cases

8



1. Continuous control u and impulse control v have the same monetary effect (e.g. cost or
profit). An example is the model by Seierstad and Sydsæter (1987, pp. 199-202) where
just the impulse control is used to sell the complete stock of the resource at the best point
in time. It is a non-autonomous model were the two controls appear in the model in the
same way and are substitutes. The jump occurs at one time instant and in that sense
this model is comparable to a model that has the most rapid approach path (MRAP)
property (see e.g. Hartl and Feichtinger (1987)), where the singular arc is reached by
applying impulse control at one point of time (usually the initial time point), followed by
a singular arc which is maintained using the continuous control. The same analysis hold
for the model by Seierstad and Sydsæter (1987, pp. 202-206). Other existing optimal
control models having this MRAP property are, e.g., Jorgenson(1963; 1967), and Sethi
(1973). These kinds of models are not considered in this paper any further.

2. The impulse control has a higher cost. An example is the model by Blaquière (1979)(see
Section 3.2), where, for suitable values of x(0), only the continuous control is used to do
preventive maintenance for the machine but no impulse control to repair or upgrade the
machine. If x(0) is very low an impulse jump occurs at the initial time (MRAP-property),
after which preventive maintenance is applied.

3. The impulse control has a lower cost. An example would be the model by Blaquière
(1979)(see Section 3.2), with modified parameters so that repair is more attractive than
preventive maintenance. Then one would not do preventive maintenance but only re-
pair during the planning period. This will lead to an impulse chattering solution. We
demonstrate in Section 3.1 that in such cases no optimal solution exists.

In some sense, these results are trivial, i.e. there is no interesting combination of the two
types of control. Such interesting cases occur when there is some fixed cost involved in the
impulse cost function. In the non-linear impulse control case where no continuous control u
is present (Case C ) this fixed cost in the impulse cost function often occurs, examples are e.g.
Luhmer (1986) and Chahim et al. (2011). In Kort (1989) a model is given that analyzes the
behavior of a firm under a concave adjustment cost function where impulse control is applied.
However, in Section 3.5 we demonstrate that an optimal impulse control solution does not exist!

In the literature no problems exist dealing with the non-linear impulse control case where
the continuous control u is present (Case D). This is different in the literature on stochastic
impulse control, where, e.g., Bensoussan and Lions (1984, Chapter 1, Section 4) discuss an in-
ventory problem with continuous production and impulse ordering of goods. However, as said
before, our paper restricts itself to a deterministic impulse control framework, and, since “Case
D problems” do not occur in this literature, we will not consider this case any further.

In the next sections we will discuss several (relevant) problems, check whether the sufficiency
conditions 2.3 hold, and describe how their solution looks like. In particular we prove that in
the roadside inn problem (Section 3.1), in one scenario of the maintenance problem in Section
3.2, and in the investment problem of Section 3.5 no optimal solution exists. These problems
have in common that “impulse chattering” occurs on a time interval with positive length. On
the other hand, for problems in Section 3.3 (Luhmer (1986)), Section 3.4 (Gaimon (1985; 1986a;
1986b)) and Section 3.6 (Chahim et al. (2011)) an algorithm can be designed that employs the
necessary optimality conditions to find all candidate solutions for optimality, as is shown in
Luhmer (1986) (see also Kort (1989) and Chahim et al. (2011)). Out of these candidate solu-
tions we can simply select the one with the highest objective value, which is then for sure the
optimal solution.
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3.1 Blaquière (1977a; 1977b): Maximizing the profit of a roadside inn (Case

A)

In Blaquière (1977a; 1977b) an example is given that deals with maximizing the profit of the
owner of a roadside inn. The owner attracts more customers if he repaints the inn. The following
model is given:

max
vi,N

W (T ) = A

∫ T

0
x(t)dt−

N
∑

i=0

viC, (18)

s.t.
ẋ(t) = −kx(t), for t /∈ {τ1, . . . , τN},

x(τ+i )− x(τ−i ) = vi(1− x(τ−i )), for i ∈ {1, . . . , N},
x ∈ R, vi ∈ [0, 1], and x(0−) = x0, τi ∈ [0, T ],

where N is the number of times the inn is (re)painted, viC, i = 0, ..., N , the cost of each
(re)paint job, and A a strictly positive constant. It is assumed that 0 ≤ x ≤ 1, and each time
the inn is repainted the index of appearances of the inn x undergoes an upward jump from its
previous value x(τ−i ). Between (re)painting x decays as given above, with the depreciation rate
k being a positive constant. Furthermore, we assume that after the planning period the inn will
not be used (i.e. the salvage value is set to zero). In Sethi and Thompson (2006, pp. 324-330)
this problem has been reinterpreted as “The Oil Driller’s Problem”.

The Hamiltonian and Impulse Hamiltonian in short hand notation are

Ham(x, µ) = Ax+ µ(−kx),

IHam(x, vi, µ(τi)) = vi(−C) + µ(τi)v
i(1− x) = vi(−C + µ(τi)(1− x)).

Both the impulse control variable and state variable are linear in IHam and Ham. Due to
the interaction term between the impulse control variable and the state variable in the Impulse
Hamiltonian, IHam is not concave in (x, vi) jointly, so that the necessary optimality conditions
are not sufficient.

To solve the above stated model we first consider the continuous version of this problem (i.e.
the problem where the impulse control vi is replaced by a continuous control u):

max
u

W (T ) =

∫ T

0
Ax(t)− u(t)Cdt, (19)

s.t.
ẋ(t) = −kx(t) + u(1− x(t)),
x ∈ R, u ∈ [0,∞] and x(0) = x0.

We can identify this model as the Vidale-Wolfe advertising model discussed in Sethi (1973). The
solution for this model is given in Figure 2. If the initial value of x(0) is lower than the singular
arc value of x(t) (i.e. x̂s) at t∗, we set the control u = ∞ so that the singular arc is reached
immediately (MRAP property). If the initial value of x(0) is higher than x̂s the control u = 0 is
applied until x has reached x̂s. At the singular arc the control is set at u = ûs = kx̂s/(1− x̂s),
so that x(t) is kept constant at the level x̂s. At the final planning period the control is equal to
zero, since the remaining time period is too short to defray the cost uC.
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t
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x
′′(0)

u = 0

(b) x′′(0) > x̂s

Figure 2: Vidale-Wolfe model solution

To solve the Blaquière (1977a; 1977b) impulse control model, we only need to approximate the
continuous Vidale-Wolfe advertising model as much as possible. This is straightforward for the
solution part where u = 0 (then simply put vi = 0) or where u = ∞. In the latter case apply an
initial impulse control jump, where v1 = x̂s − x′(0). On the singular arc we divide the interval
[tsa, T ] (with tsa the time the singular arc is reached) in l parts of equal length and set within
each interval first vi = v̄ (where v̄ is such that x̃+ v̄− x̂s = x̂s− x̃ with x̃ = x(τ−1 ) = . . . = x(τ−N ))
and then vi = 0. In this way we create a “saw-toothed” shape around the singular arc. This
control policy is shown in Figure 3 and is the impulse control equivalent of chattering control
(see e.g. Feichtinger and Hartl (1986, pp. 78-81) or Kort (1989, pp. 62-70)). It is important
to note that for each given “saw-toothed” solution, a better solution is available by increasing l
and decreasing v̄. We conclude that an optimal solution does not exist. This observation cannot
be found in Blaquière (1977a; 1977b), or in Sethi and Thompson (2006, pp. 324-330).
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T
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no impulses
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(b) x′′(0) > x̂s

Figure 3: Blaquière (1977) model solution with impulse chattering

3.2 Blaquière (1979): Optimal maintenance of machines (Case B)

The following problem is taken from Blaquière (1979) and is also extensively analyzed in
Sethi and Thompson (2006, pp. 331-337). This example deals with the optimal maintenance of
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machines.

max
vi,u,τi,N

W (T ) =

∫ T

0
(Ax(t)− u(t))dt+

N
∑

i=1

vi(Kx(τ−i )− C), (20)

s.t.
ẋ(t) = −kx(t) +mu, for t /∈ {τ1, . . . , τN},

x(τ+i )− x(τ−i ) = vi(1− x(τ−i )), for i ∈ {1, . . . , N},
x ∈ R, vi ∈ [0, 1], u ∈ [0, ū], x(0−) = x0 and τi ∈ [0, T ],

where N is the number of times the machines is repaired, C −Kx(τi), i = 1, ..., N , the cost of
each reparation, and A a strictly positive constant. It is assumed that 0 ≤ x ≤ 1, and each time
the machine is repaired (where full repair, i.e. vi = 1 stands for replacing the machine with a
new one) the index of appearances of the machine, x, undergoes an upward jump starting from
its previous value x(τ−i ). Between reparations x decays as given above, with k and m positive
constant. The rate of maintenance expenses is denoted by u (i.e. the continues control).
Moreover it is assumed that the cost of a reparation indexed by vi is of the form vi(C −Kx1),
where C and K are strictly positive constants. Furthermore, we assume that after the planning
period the machine will not be used (i.e. the salvage value is set to zero). The Hamiltonian and
Impulse Hamiltonian in short hand notation are

Ham(x, µ, u) = Ax− u+ µ(−kx+mu),

IHam(x, vi, µ(τi)) = vi(Kx−C) + µ(τi)v
i(1− x) = vi(Kx− C + µ(τi)(1− x)).

Both the impulse control variable and state variable are linear in IHam and Ham. Due to
the interaction term between the impulse control variable and the state variable in the Impulse
Hamiltonian the necessary optimality conditions are not sufficient, since IHam is not concave
in (x, vi). Because the sufficient conditions do not hold we know that multiple solutions can
occur for this problem. Here we will distinguish between two cases:

• The impulse control has a higher cost. When x(0) is sufficiently large, only the continuous
control is used to do preventive maintenance for the machine, so no impulse control is
applied to repair or upgrade the machine. In this case the coefficients satisfy mK ≤ 1 <
mC < mA

k
. When x(0) is very low, besides preventive maintenance, an impulse jump

occurs at the initial time and in that sense this model is comparable to a model that has
the most rapid approach path (MRAP) property. For the analysis of this case we refer to
Blaquière (1979).

• The impulse control has lower cost. Then one would not do preventive maintenance but
repair during the planning period. This results in impulse chattering analogous to the
Blaquière (1977a; 1977b) model in Section 3.1. Hence, for this case no optimal solution
exists.

3.3 Luhmer (1986)): Minimizing inventory cost (Case C )

Luhmer (1986) applies the Impulse Control Maximum Principle to solve an inventory problem.
The following model is presented:

C(T, vi) = min
vi,τi,N

∫ T

0
h(I(t), t)e−rtdt+

N
∑

i

(

p(vi, τi)v
i + C(τi)

)

e−rτi − S(I(T ))e−rT , (21)
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s.t.
İ(t) = −d(t)− g(I(t), t) for t /∈ {τ1, . . . , τN},

I(τ+i )− I(τ−i ) = vi > 0 for i ∈ {1, . . . , N},
I ∈ R, vi ∈ [0,∞) , I(0) = I0, I(T ) = Ie and τi ∈ [0, T ],

where h denotes the holding or shortage cost and I(t) the inventory level at time t. I(t) de-
creases over time by the demand rate d(t) and leakage losses g(I(t), t). At a time instance τi
the inventory is increased by a quantity vi and the unit ordering costs are given by p(vi, τi).
An order of size vi at time τi results in a variable cost of (p(vi, τi)v

i plus a fixed ordering cost
of size C(τi). At the end of the planning period a scrap value for inventory is left over, which
is denoted by S(I(T )). Finally, r stands for the risk-free discount rate.

Due to the fixed cost, the model violates the requirement that the cost function should be
continuously differentiable in the control in order for the Impulse Control Maximum Princi-
ple to be applicable. However, performing our transformation of Section 2.3 ensures that the
Impulse Control Maximum Principle can still be applied. Moreover, the discontinuity in the
cost function causes that the sufficient conditions do not hold, i.e. the Impulse Hamiltonian is
not concave in (I, vi) jointly. This implies that we can have multiple solutions satisfying the
necessary optimality conditions. To solve this problem, Luhmer (1986) describes an algorithm
that finds all these candidate solutions. Typically, this gives a tree structure in which the jumps
of all candidate solutions are presented (cf. Section 3.6). The optimal solution is that candidate
solution with the highest objective value.

3.4 Gaimon (1985; 1986a; 1986b): Optimal dynamic mix of manual and
automatic output (Case B)

Gaimon(1985; 1986a) determines the optimal times of impulse acquisition of automation and
the change for manual output. The objective is to minimize cost associated with deviation from
a goal level of output. The purchase of automation is used to directly substitute for output
resulting from manually operated equipment. Since automation is acquired at discrete times in
the planning period the author solves the model using the impulse control maximum principle.
The following model is given:

min
h,s,vi,τi,N

J(T ) =

∫ T

0
{w[p(t) + q(t)− g(t)]2 + c1(t)h

2(t)

+c2(t)s
2(t) + f1(t)p(t) + f2(t)q(t)}e

−rtdt,

+
N
∑

i=1

c3(τi)v
ie−rτi − β[p(T ) + q(T )]e−rT , (22)

s.t.
ṗ(t) = −d(t) + h(t)− s(t), for t /∈ {τ1, . . . , τN},

q(τ+i )− q(τ−i ) = µvi, for i ∈ {1, . . . , N},
h(t) ∈ [0,H(t)], s(t) ∈ [0, S(t)], p(0) = p0,
q(0−) = q0, vi ∈ {0, 1} and τi ∈ [0, T ],

where N is the number of times automation equipment is acquired. c3(τi)v
i, i = 0, ..., N , the

cost of acquiring the ith automation at time τi, where vi denotes the ith technology purchase.
The level of automation output and manual output are given by q(t) and p(t) respectively. The
cost of producing output manually at time t is given by f1(t) and the cost of producing output
automatically at time t is given by f2(t). The cost of increasing and reducing the level of manual
output per unit squared at time t is represented by c1(t)h

2(t) and c2(t)s
2(t), respectively, where
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h(t) denotes the level of increase in manual output at time t, with H(t) the available supply of
labor and s(t) denotes the level of reduction in manual output at time t, with S(t) the maximum
permitted level of reduction at time t. The level of reduction in manual output at time t in
units of output is represented by d(t), and g(t) represents the goal level of output at time t also
in units of output. Finally, w stands for the weight or cost of the squared deviation between
the actual and the goal levels of output, µ the units of increase in output due to purchased
automation, r is the discount rate, and β the value of the production per unit of output at the
end of the planning period.

The difference with the other impulse control models is that the impulse control variable vi

can admit only two values: 0 or 1. It follows that the term c3(τi)v
i works as a fixed cost.

Hence, analoguous to the model in Section 3.3, sufficient conditions do not hold, so that in
principle multiple solutions can satisfy the necessary optimality conditions. Furthermore our
transformation of Section 2.3 is needed to apply the Impulse Control Maximum Principle. This
is not mentioned in Gaimon (1985; 1986a). A similar reasoning holds for Gaimon and Thompson
(1984).

Gaimon (1986b) determines the optimal times and levels of impulse acquisition of automa-
tion and the levels of change for manual output with a similar objective. The main difference
is that in Gaimon (1986b) the magnitude of automation output can have different values. So
Gaimon (1986b) not only determines the time of acquiring automation but also the size of this
acquisition. The model is :

min
h,s,f2,vi,τi,N

J(T ) =

∫ T

0
{w[p(t) + q(t)− g(t)]2 + c1(t)h

2(t)

+c2(t)s
2(t) + f1(t)p(t) + [F2(t) + f2(t)]q(t)}e

−rtdt,

+

N
∑

i=1

c3(v
i, τi)e

−rτi − β[p(T ) + q(T )]e−rT , (23)

s.t.
ṗ(t) = −d(t) + h(t)− s(t), for t /∈ {τ1, . . . , τN},

q(τ+i )− q(τ−i ) = vi, for i ∈ {1, . . . , N},
f2(τ

+
i ) = f2(τ

−

i )[1− αvi],
h(t) ∈ [0,H(t)], s(t) ∈ [0, S(t)], p(0) = p0, p(t) ≥ 0,
q(0−) = q0, vi ∈ [0, A(τi)] and τi ∈ [0, T ],

where in addition to the notation also used in model (22), F2(t) is the component of the per
unit cost of operating automatic equipment that is unaffected by the acquisition of automation
at time t, f2(t) is the per unit cost of obtaining output automatically at time t, whereas α
stands for the effectiveness of a unit acquisition of automation on reducing f2(τi) at time τi
(0 ≤ α ≤ 1/A(τi)).

All examples in Gaimon (1986b) have an impulse cost function of the form c3(v
i, τi) = C0+C1v

i2.
This again implies that the problem contains a fixed cost, and thus sufficiency conditions do
not hold so that multiple solutions can satisfy the necessary optimality conditions.

3.5 Kort (1989, pp. 62-70): Firm behavior under a concave adjustment cost
function (Case C )

In Kort (1989) a model is given that analyzes the behavior of a firm under a concave adjustment
cost function. Kort (1989) applies impulse control because the concave cost function results in
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a Hamiltonian that is convex in the control. The following model is studied:

C(T, vi) = max
vi,τi,N

∫ T

0
S(K)e−rtdt−

N
∑

i

(

vi +A(vi)

)

e−rτi +K(T )e−rT , (24)

s.t.
K̇(t) = −aK(t), for t /∈ {τ1, . . . , τN},

K(τ+i )−K(τ−i ) = vi > 0, for i ∈ {1, . . . , N},
K ∈ R+, vi ∈ [0,∞) K(0) = K0 and τi ∈ [0, T ].

where vi stands for the i-th investment impulse, and τi is the time of the i-th impulse. The

adjustment costs of the i-th investment impulse are given by A(vi) (with ∂A(vi)
∂vi

> 0 and ∂2A(vi)
∂vi2

<
0), K(t) is the amount of capital goods at time t, and a is a constant depreciation rate. Like
Feichtinger and Hartl (1986), Kort (1989) applies the incorrect current value Impulse Control
Maximum Principle and designs an algorithm to find all candidate solutions that starts at time
T and works backward in time (this is different from Luhmer (1986), whose algorithm starts at
time zero). The Hamiltonian and Impulse Hamiltonian in short hand notation are

Ham(K,λ) = S(K)− λaK,

IHam(vi, λ(τi)) = −
(

vi +A(vi)
)

+ λ(τi)v
i.

Note that the Impulse Hamiltonian does not depend on K so here there is no state-control
interaction. However the sufficient conditions do not hold due to the concave adjustment cost
function which implies that the Impulse Hamiltonian is not concave in vi. The continuous case
of this problem is also described in Kort (1989, pp. 57-62) and consists of a chattering control
solution. Consequently, the impulse control model has a “singular” arc with chattering too.
Analogous to the Blaquière (1977a; 1977b) model in section 3.1, also here we have to conclude
that no optimal solution exists. This was not noted in Kort (1989, pp. 62-70).

3.6 Chahim et al. (2011): Dike height optimization (Case C )

This section analyzes the problem of the optimal timing of heightening a dike. The cost-benefit-
economic decision problem contains two types of cost, namely investment cost and cost due to
damage (caused by failure of protection by the dikes). Clearly, there is a trade off between
investment cost and damage cost. The model in Chahim et al. (2011) is as follows:

min
vi,τi,N

(

∫ T

0
S(t)e−rtdt+

N
∑

i=1

I(vi,H(τ−i ))e−rτi + e−rT S(T )

r
), (25)

s.t.
Ḣ(t) = 0, for t /∈ {τ1, . . . , τN},

H(τ+i )−H(τ−i ) = vi > 0, for i ∈ {1, . . . , N},
H ∈ R+, vi ∈ [0,∞) H0 = 0 and τi ∈ [0, T ],

where vi stands for the i-th dike heightening, H(t) is the height of the dike at time t relative to
the initial situation, i.e. H(0) = 0 (cm), τ stands for the time of the dike update (years), and r
is the risk-free discount rate. The objective (25) consist of two parts. The first part is the total
(discounted) expected damage cost, which is given by

∫ T

0
S(t)e−rtdt+

S(T )e−rT

r
,
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where S(t) denotes the expected damage at time t, i.e. S(t) = P (t)V (t). The flood probability
P (t) (1/year) in year t is defined as

P (t) = P0e
αηte−αH(t), (26)

where α (1/cm) stands for the parameter in the exponential distribution regarding the flood
probability, η (cm/year) is the parameter that indicates the increase of the water level per year,
and P0 denotes the flood probability at t = 0. The damage of a flood V(t) (million e) is given
by

V (t) = V0e
γteζH(t), (27)

in which γ (per year) is the parameter for economic growth, and ζ (1/cm) stands for the damage
increase per cm dike height. V0 (million e) denotes the loss by flooding at time t = 0. The
second part of the objective is the total (discounted) investment cost

N
∑

i=1

I(vi,H(τ−i ))e−rτi ,

where N is the number of dike heightenings and H(τ−) the height of the dike (in cm) just before
the dike update at time τ (left-limit of H(t) at t = τ). The investment cost is given by

I(vi,H(τ−)) =

{

A0(H(τ−) + vi)2 + b0v
i + c0 for vi 6= 0

0 for vi = 0,

for suitably chosen constants A0, b0 and c0. The current value Hamiltonian is

Ham(t,H(t)) = −S0e
βte−θH(t),

while the Impulse Hamiltonian (if jump vi > 0) is given by

IHam(t,H(τ−), vi, λ(t)) = −I(vi,H(τ−i )) + λ(t)vi = −A0(H(τ−) + vi)2 − b0v
i − c0 + λ(t)vi.

This problem is modeled as an impulse control problem due to the fixed cost, c0, involved
with each dike heightening vi. As was the case for Luhmer (1986), due to this fixed cost
a discontinuity arises in the cost function. The first implication is that the Impulse Control
Maximum Principle cannot be straightforwardly applied (although our transformation in Section
2.3 makes up for this), and, second, the sufficiency conditions do not hold (i.e. the Impulse
Hamiltonian is not concave in (H, vi) jointly). Chahim et al. (2011) implement the backward
algorithm designed by Kort (1989, pp. 62-70). This algorithm solves the above stated problem
(25) for different values of H(T ). The optimal H(T ) could be found, because this one led to the
lowest value of the objective function. In Figure 4 the tree for dike ring area 10 is presented.
The tree shows all candidate solutions for (the optimal) H(t) = 282.57.
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Figure 4: Example Tree, Dike ring area 10, H(T ) = 282.57

Due to the fixed costs, small jumps cannot be optimal which is why one can cut away all the
upper branches in Figure 4. Formally this can be proved by observing that a solution that
contains such a small jump, is dominated by a solution where the small jump is deleted, while
instead it is added to the previous jump. This implies that only the optimal solution is left
over. In Table 1 this optimal solution (and corresponding cost) are presented.

No. 10

τi (years) vi(cm)

Updates(τi : v
i) 275.93 57.15

213.08 61.35
153.43 57.30
97.98 53.99
45.24 52.78

H(T )(cm) 282.57

Investment cost (million e) 10.17
Damage cost (million e) 29.96
Total cost (million e) 40.13

Table 1: Impulse control solutions for dike ring area 10 with quadratic investment cost

4 Conclusion and recommendations

This paper gives a correct formulation of the necessary optimality conditions of the Impulse
Control Maximum Principle based on the current value formulation. In this way we correct
Feichtinger and Hartl (1986, appendix 6) and Kort (1989, pp. 62-70). We review the existing
impulse control models in the literature and show that all meaningful problems found in the
literature do not satisfy the sufficiency conditions. We observe that these problems either have a
concave cost function, contain a fixed cost, or have a control-state interaction, which all lead to
non-concavities violating sufficiency. The implication of not satisfying the sufficiency conditions
is that multiple solutions can arise and a so called tree-structure of jumps can be identified. We
also show for the first time that for some problems no optimal solution exists since part of the
trajectory consists of staying on the singular arc by applying some kind of impulse chattering.
Finally, we provide a transformation, which makes clear why the Impulse Control Maximum
Principle can still be applied to problems with a fixed cost despite the fact that this violates
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the continuous differentiability property of the model.

In this paper, we classify existing operations research models involving impulse control in four
categories. In doing so we observe that non-linear deterministic impulse control problems in
which a continuous control is present (case D) are missing in the literature. Some possibilities
for future research arise here. A possibility is to extend Chahim et al. (2011) with continuous
dike maintenance.
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Augustin, D. (2002). Sensitivitätsanalyse und Echtzeit-Steuerung optimaler Steuerprozesse
mit Zustandbeschränkungen sowie für Multiprozess- und Impulsprobleme. PhD thesis,
Westfälische Wilhelms-Universität, Münster.

Bensoussan, A. and Lions, K. L. (1984). Impulse Control and Quasi-Variational Inequalities.
Gauthier-Villars, Paris.

Bensoussan, A., Liu, R., and Sethi, S. P. (2006). Optimality of an (s, S) policy with compound
poisson and diffusion demands: A quasi-variational inequilities approach. SIAM Journal on
Control and Optimization, 44(5):1650–1676.

Blaquière, A. (1977a). Differential games with piece-wise continuous trajectories. In Hagedorn,
P., Knobloch, H. W., and Olsder, G. J., editors, Diffential Games and Applications, pages
34–69. Springer-Verlag, Berlin.

Blaquière, A. (1977b). Necessary and sufficient conditions for optimal strategies in impulsive
control and application. In Aoki, M. and Morzzolla, A., editors, New trends in Dynamic
System Theory and Economics, pages 183–213. Academic Press, New York.

Blaquière, A. (1979). Necessary and sufficient conditions for optimal strategies in impulsive
control. In Lui, P. T. and Roxin, E. O., editors, Differential Games and Control Theory III,
Part A, pages 1–28. Marcel Dekker, New York.

Blaquière, A. (1985). Impulsive optimal control with finite or infinite time horizon. Journal of
Optimization Theory and Applications, 46(4):431–439.

Chahim, M., Brekelmans, R. C. M., Den Hertog, D., and Kort, P. M. (2011). An impulse control
approach for dike height optimization. Working paper, Tilburg University, Tilburg.

Dixit, A. K. and Pindyck, R. S. (1994). Investment under uncertainty. NJ: Princeton University
Press, Princeton.

Feichtinger, G. and Hartl, R. F. (1986). Optimale Kontrolle ökonomischer Prozesse: Anwen-
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