88 research outputs found

    A Framework for Symmetric Part Detection in Cluttered Scenes

    Full text link
    The role of symmetry in computer vision has waxed and waned in importance during the evolution of the field from its earliest days. At first figuring prominently in support of bottom-up indexing, it fell out of favor as shape gave way to appearance and recognition gave way to detection. With a strong prior in the form of a target object, the role of the weaker priors offered by perceptual grouping was greatly diminished. However, as the field returns to the problem of recognition from a large database, the bottom-up recovery of the parts that make up the objects in a cluttered scene is critical for their recognition. The medial axis community has long exploited the ubiquitous regularity of symmetry as a basis for the decomposition of a closed contour into medial parts. However, today's recognition systems are faced with cluttered scenes, and the assumption that a closed contour exists, i.e. that figure-ground segmentation has been solved, renders much of the medial axis community's work inapplicable. In this article, we review a computational framework, previously reported in Lee et al. (2013), Levinshtein et al. (2009, 2013), that bridges the representation power of the medial axis and the need to recover and group an object's parts in a cluttered scene. Our framework is rooted in the idea that a maximally inscribed disc, the building block of a medial axis, can be modeled as a compact superpixel in the image. We evaluate the method on images of cluttered scenes.Comment: 10 pages, 8 figure

    Visual Chunking: A List Prediction Framework for Region-Based Object Detection

    Full text link
    We consider detecting objects in an image by iteratively selecting from a set of arbitrarily shaped candidate regions. Our generic approach, which we term visual chunking, reasons about the locations of multiple object instances in an image while expressively describing object boundaries. We design an optimization criterion for measuring the performance of a list of such detections as a natural extension to a common per-instance metric. We present an efficient algorithm with provable performance for building a high-quality list of detections from any candidate set of region-based proposals. We also develop a simple class-specific algorithm to generate a candidate region instance in near-linear time in the number of low-level superpixels that outperforms other region generating methods. In order to make predictions on novel images at testing time without access to ground truth, we develop learning approaches to emulate these algorithms' behaviors. We demonstrate that our new approach outperforms sophisticated baselines on benchmark datasets.Comment: to appear at ICRA 201

    Computational models for image contour grouping

    Get PDF
    Contours are one dimensional curves which may correspond to meaningful entities such as object boundaries. Accurate contour detection will simplify many vision tasks such as object detection and image recognition. Due to the large variety of image content and contour topology, contours are often detected as edge fragments at first, followed by a second step known as {u0300}{u0300}contour grouping'' to connect them. Due to ambiguities in local image patches, contour grouping is essential for constructing globally coherent contour representation. This thesis aims to group contours so that they are consistent with human perception. We draw inspirations from Gestalt principles, which describe perceptual grouping ability of human vision system. In particular, our work is most relevant to the principles of closure, similarity, and past experiences. The first part of our contribution is a new computational model for contour closure. Most of existing contour grouping methods have focused on pixel-wise detection accuracy and ignored the psychological evidences for topological correctness. This chapter proposes a higher-order CRF model to achieve contour closure in the contour domain. We also propose an efficient inference method which is guaranteed to find integer solutions. Tested on the BSDS benchmark, our method achieves a superior contour grouping performance, comparable precision-recall curves, and more visually pleasant results. Our work makes progresses towards a better computational model of human perceptual grouping. The second part is an energy minimization framework for salient contour detection problem. Region cues such as color/texture homogeneity, and contour cues such as local contrast, are both useful for this task. In order to capture both kinds of cues in a joint energy function, topological consistency between both region and contour labels must be satisfied. Our technique makes use of the topological concept of winding numbers. By using a fast method for winding number computation, we find that a small number of linear constraints are sufficient for label consistency. Our method is instantiated by ratio-based energy functions. Due to cue integration, our method obtains improved results. User interaction can also be incorporated to further improve the results. The third part of our contribution is an efficient category-level image contour detector. The objective is to detect contours which most likely belong to a prescribed category. Our method, which is based on three levels of shape representation and non-parametric Bayesian learning, shows flexibility in learning from either human labeled edge images or unlabelled raw images. In both cases, our experiments obtain better contour detection results than competing methods. In addition, our training process is robust even with a considerable size of training samples. In contrast, state-of-the-art methods require more training samples, and often human interventions are required for new category training. Last but not least, in Chapter 7 we also show how to leverage contour information for symmetry detection. Our method is simple yet effective for detecting the symmetric axes of bilaterally symmetric objects in unsegmented natural scene images. Compared with methods based on feature points, our model can often produce better results for the images containing limited texture

    Multi-cue Mid-level Grouping

    Full text link
    Abstract. Region proposal methods provide richer object hypotheses than sliding windows with dramatically fewer proposals, yet they still number in the thousands. This large quantity of proposals typically re-sults from a diversification step that propagates bottom-up ambiguity in the form of proposals to the next processing stage. In this paper, we take a complementary approach in which mid-level knowledge is used to re-solve bottom-up ambiguity at an earlier stage to allow a further reduction in the number of proposals. We present a method for generating regions using the mid-level grouping cues of closure and symmetry. In doing so, we combine mid-level cues that are typically used only in isolation, and leverage them to produce fewer but higher quality proposals. We empha-size that our model is mid-level by learning it on a limited number of objects while applying it to different objects, thus demonstrating that it is transferable to other objects. In our quantitative evaluation, we 1) establish the usefulness of each grouping cue by demonstrating incre-mental improvement, and 2) demonstrate improvement on two leading region proposal methods with a limited budget of proposals.

    Automatic Extraction of Closed Contours Bounding Salient Objects: New Algorithms and Evaluation Methods

    Get PDF
    The problem under consideration in this dissertation is achieving salient object segmentation of natural images by means of probabilistic contour grouping. The goal is to extract the simple closed contour bounding the salient object in a given image. The method proposed here falls in the Contour Grouping category, searching for the optimal grouping of boundary entities to form an object contour. Our first contribution is to provide both a ground truth dataset and a performance measure for empirical evaluation of salient object segmentation methods. Our Salient Object Dataset (SOD) provides ground truth boundaries of salient objects perceived by humans in natural images. We also psychophysically evaluated 5 distinct performance measures that have been used in the literature and showed that a measure based upon minimal contour mappings is most sensitive to shape irregularities and most consistent with human judgements. In fact, the Contour Mapping measure is as predictive of human judgements as human subjects are of each other. Contour grouping methods often rely on Gestalt cues locally defined on pairs of oriented features. Accurate integration of these local cues with global cues is a challenge. A second major contribution of this dissertation is a novel, effective method for combining local and global cues. A third major contribution in this dissertation is a novel method based on Principal Component Analysis for promoting diversity among contour hypotheses, leading to substantial improvements in grouping performance. To further improve the performance, a multiscale implementation of this method has been studied. A fourth contribution in this dissertation is studying the effect of the multiscale prior on the performance and analysing the method for combining the results obtained in different resolutions. Our final contribution is comparing the performance of univariate distribution models for local cues used by our method with the use of a multivariate mixture model for their joint distribution. We obtain slight improvement by the mixture models. The proposed method has been evaluated and compared with four other state-of-the-art grouping methods, showing considerably better performance on the SOD ground truth dataset

    Learning a classification model for segmentation

    Full text link

    Feature-aware uniform tessellations on video manifold for content-sensitive supervoxels

    Get PDF
    Over-segmenting a video into supervoxels has strong potential to reduce the complexity of computer vision applications. Content-sensitive supervoxels (CSS) are typically smaller in content-dense regionsand larger in content-sparse regions. In this paper, we propose to compute feature-aware CSS (FCSS) that are regularly shaped 3D primitive volumes well aligned with local object/region/motion boundaries in video.To compute FCSS, we map a video to a 3-dimensional manifold, in which the volume elements of video manifold give a good measure of the video content density. Then any uniform tessellation on manifold can induce CSS. Our idea is that among all possible uniform tessellations, FCSS find one whose cell boundaries well align with local video boundaries. To achieve this goal, we propose a novel tessellation method that simultaneously minimizes the tessellation energy and maximizes the average boundary distance.Theoretically our method has an optimal competitive ratio O(1). We also present a simple extension of FCSS to streaming FCSS for processing long videos that cannot be loaded into main memory at once. We evaluate FCSS, streaming FCSS and ten representative supervoxel methods on four video datasets and two novel video applications. The results show that our method simultaneously achieves state-of-the-art performance with respect to various evaluation criteria

    SLIC SUPERPIXELS FOR OBJECT DELINEATION FROM UAV DATA

    Get PDF
    corecore