37,892 research outputs found

    A general solution framework for component commonality problems

    Get PDF
    Component commonality, the use of the same version of a component across multiple products, is increasingly considered as a promising way to offer high external variety while retaining low internal variety in operations. However, increasing commonality has both positive and negative cost effects, so that optimization approaches are required to identify an optimal commonality level. As a more or less of components influences nearly every process step along the supply chain, it is not astounding that a multitude of diverging commonality problems is investigated in literature, each of which developing a specific algorithm designed for the respective commonality problem considered. The paper on hand aims at a general framework, flexible and effcient enough to be applied to a wide range of commonality problems. Such a procedure basing on a two-stage graph approach is presented and tested. Finally, flexibility of the procedure is shown by customizing the framework to account for different types of commonality problems.Product variety, Component commonality, Optimization, Graph approach

    Expert system development for commonality analysis in space programs

    Get PDF
    This report is a combination of foundational mathematics and software design. A mathematical model of the Commonality Analysis problem was developed and some important properties discovered. The complexity of the problem is described herein and techniques, both deterministic and heuristic, for reducing that complexity are presented. Weaknesses are pointed out in the existing software (System Commonality Analysis Tool) and several improvements are recommended. It is recommended that: (1) an expert system for guiding the design of new databases be developed; (2) a distributed knowledge base be created and maintained for the purpose of encoding the commonality relationships between design items in commonality databases; (3) a software module be produced which automatically generates commonality alternative sets from commonality databases using the knowledge associated with those databases; and (4) a more complete commonality analysis module be written which is capable of generating any type of feasible solution

    Commonality analysis as a knowledge acquisition problem

    Get PDF
    Commonality analysis is a systematic attempt to reduce costs in a large scale engineering project by discontinuing development of certain components during the design phase. Each discontinued component is replaced by another component that has sufficient functionality to be considered an appropriate substitute. The replacement strategy is driven by economic considerations. The System Commonality Analysis Tool (SCAT) is based on an oversimplified model of the problem and incorporates no knowledge acquisition component. In fact, the process of arriving at a compromise between functionality and economy is quite complex, with many opportunities for the application of expert knowledge. Such knowledge is of two types: general knowledge expressible as heuristics or mathematical laws potentially applicable to any set of components, and specific knowledge about the way in which elements of a given set of components interrelate. Examples of both types of knowledge are presented, and a framework is proposed for integrating the knowledge into a more general and useable tool

    Modularity and Delayed Product Differentiation in Assemble-to-order Systems: Analysis and Extensions from a Complexity Perspective

    Get PDF
    The paper assumes a product design around modular architectures and discusses the suitability of the principle of delayed product differentiation in assemble-to-order environments. We demonstrate that this principle does not enable one to make optimal decisions concerning how variety should proliferate in the assembly process. Therefore, we propose to complement this principle in that we additionally consider the variety induced complexity throughout the assembly process. The weighted Shannon entropy is proposed as a measure for the evaluation of this complexity. Our results show that the delayed product differentiation principle is reliable when the selection probabilities of module variants at each assembly stage are equal and the pace at which value is added in the whole assembly process is constant. Otherwise, the proposed measure provides different results. Furthermore, the entropy measure provides interesting clues concerning eventual reversals of assembly sequences and supports decisions regarding what modules in an assembly stage could be substituted by a common module.modularity; complexity; ATO; delayed product differentiation

    Optimization as a design strategy. Considerations based on building simulation-assisted experiments about problem decomposition

    Full text link
    In this article the most fundamental decomposition-based optimization method - block coordinate search, based on the sequential decomposition of problems in subproblems - and building performance simulation programs are used to reason about a building design process at micro-urban scale and strategies are defined to make the search more efficient. Cyclic overlapping block coordinate search is here considered in its double nature of optimization method and surrogate model (and metaphore) of a sequential design process. Heuristic indicators apt to support the design of search structures suited to that method are developed from building-simulation-assisted computational experiments, aimed to choose the form and position of a small building in a plot. Those indicators link the sharing of structure between subspaces ("commonality") to recursive recombination, measured as freshness of the search wake and novelty of the search moves. The aim of these indicators is to measure the relative effectiveness of decomposition-based design moves and create efficient block searches. Implications of a possible use of these indicators in genetic algorithms are also highlighted.Comment: 48 pages. 12 figures, 3 table

    Variety Steering Concept for Mass Customization

    Get PDF
    In this paper we make the distinction between subjective and objective customer needs. The subjective needs are the individually realized and articulated requirements, whereas the objective needs are the real ones perceived by a fictive neutral perspective. We show that variety in mass customization has to be orientated on the objective needs. In order to help mass customizers better evaluate the degree to which they can fulfill the objective needs as well as their internal complexity level we have developed a key metrics system model. We also present a conceptual application showing how to use this model to support decision making related to the introduction or reduction of product variants.Variety Management; Complexity; Production/Operations Management

    Multi-reactor power system configurations for multimegawatt nuclear electric propulsion

    Get PDF
    A modular, multi-reactor power system and vehicle configuration for piloted nuclear electric propulsion (NEP) missions to Mars is presented. Such a design could provide enhanced system and mission reliability, allowing a comfortable safety margin for early manned flights, and would allow a range of piloted and cargo missions to be performed with a single power system design. Early use of common power modules for cargo missions would also provide progressive flight experience and validation of standardized systems for use in later piloted applications. System and mission analysis are presented to compare single and multi-reactor configurations for piloted Mars missions. A conceptual design for the Hydra modular multi-reactor NEP vehicle is presented
    • …
    corecore