1,297 research outputs found

    Scheduling of EV Battery Swapping, I: Centralized Solution

    Get PDF
    We formulate an optimal scheduling problem for battery swapping that assigns to each electric vehicle (EV) a best battery station to swap its depleted battery based on its current location and state of charge. The schedule aims to minimize a weighted sum of EVs’ travel distance and electricity generation cost over both station assignments and power flow variables, subject to EV range constraints, grid operational constraints, and ac power flow equations. To deal with the nonconvexity of power flow equations and the binary nature of station assignments, we propose a solution based on second-order cone programming (SOCP) relaxation of optimal power flow and generalized Benders decomposition. When the SOCP relaxation is exact, this approach computes a global optimum. We evaluate the performance of the proposed algorithm through simulations. The algorithm requires global information and is suitable for cases where the distribution grid, battery stations, and EVs are managed centrally by the same operator. In Part II of this paper, we develop distributed solutions for cases where they are operated by different organizations that do not share private information

    Bi-level model for operational scheduling of a distribution company that supplies electric vehicle parking lots

    Get PDF
    Nowadays, the presence of renewable energy resources (RERs), electric vehicle (EV) penetration, and the implementation of demand response (DR) programs are the main affecting factors in the operational scheduling of a distribution company (DISCO). By the new market participants such as parking lot (PL) owners in the DISCO, a bi-level framework can be created for modeling the distribution network. Therefore, in this paper, a new bi-level model is suggested for DISCO’s operational scheduling that involves technical and environmental terms in the objective function. The maximization of the profit of the DISCO owner and the PL owner are the objective functions in each level. These purposes depend on the customers’ load, the power purchased from the upstream network, the power exchanged with the PL owner (for the upper-level) and the power exchanged with the DISCO owner, as well as the EV owners (for the lower-level). Linearization of the model is carried out by applying the Karush–Kuhn–Tucker (KKT) condition and Fortuny-Amat and McCarl linearization approach. Furthermore, EVs’ and RERs’ uncertainties, as well as DR programs are modeled. Also, three types of risk are described including risk-seeker, risk-neutral, and risk-averse (with conditional value-at-risk (CVaR) index). For evaluation of the proposed model, it is applied to the IEEE 15-bus test system. Results show that by charging/discharging schedule of EVs and critical peak pricing program, the DISCO owner gains more profit. Also, the sensitivity analysis allows determining that the EV penetration, nominal power of RERs and customer involvement in the DR program directly affect the DISCO owner’s profit.© 2019 Elsevier. This manuscript version is made available under the Creative Commons Attribution–NonCommercial–NoDerivatives 4.0 International (CC BY–NC–ND 4.0) license, https://creativecommons.org/licenses/by-nc-nd/4.0/fi=vertaisarvioitu|en=peerReviewed

    Smart green charging scheme of centralized electric vehicle stations

    Get PDF
    This paper presses a smart charging decision-making criterion that significantly contributes in enhancing the scheduling of the electric vehicles (EVs) during the charging process. The proposed criterion aims to optimize the charging time, select the charging methodology either DC constant current constant voltage (DC-CCCV) or DC multi-stage constant currents (DC-MSCC), maximize the charging capacity as well as minimize the queuing delay per EV, especially during peak hours. The decision-making algorithms have been developed by utilizing metaheuristic algorithms including the Genetic Algorithm (GA) and Water Cycle Optimization Algorithm (WCOA). The utility of the proposed models has been investigated while considering the Mixed Integer Linear Programming (MILP) as a benchmark. Furthermore, the proposed models are seeded using the Monte Carlo simulation technique by estimating the EVs arriving density to the EVS across the day. WCOA has shown an overall reduction of 13% and 8.5% in the total charging time while referring to MILP and GA respectively

    Energy Management Systems for Smart Electric Railway Networks: A Methodological Review

    Get PDF
    Energy shortage is one of the major concerns in today’s world. As a consumer of electrical energy, the electric railway system (ERS), due to trains, stations, and commercial users, intakes an enormous amount of electricity. Increasing greenhouse gases (GHG) and CO2 emissions, in addition, have drawn the regard of world leaders as among the most dangerous threats at present; based on research in this field, the transportation sector contributes significantly to this pollution. Railway Energy Management Systems (REMS) are a modern green solution that not only tackle these problems but also, by implementing REMS, electricity can be sold to the grid market. Researchers have been trying to reduce the daily operational costs of smart railway stations, mitigating power quality issues, considering the traction uncertainties and stochastic behavior of Renewable Energy Resources (RERs) and Energy Storage Systems (ESSs), which has a significant impact on total operational cost. In this context, the first main objective of this article is to take a comprehensive review of the literature on REMS and examine closely all the works that have been carried out in this area, and also the REMS architecture and configurations are clarified as well. The secondary objective of this article is to analyze both traditional and modern methods utilized in REMS and conduct a thorough comparison of them. In order to provide a comprehensive analysis in this field, over 120 publications have been compiled, listed, and categorized. The study highlights the potential of leveraging RERs for cost reduction and sustainability. Evaluating factors including speed, simplicity, efficiency, accuracy, and ability to handle stochastic behavior and constraints, the strengths and limitations of each optimization method are elucidated

    On the interaction between Autonomous Mobility-on-Demand systems and the power network: models and coordination algorithms

    Full text link
    We study the interaction between a fleet of electric, self-driving vehicles servicing on-demand transportation requests (referred to as Autonomous Mobility-on-Demand, or AMoD, system) and the electric power network. We propose a model that captures the coupling between the two systems stemming from the vehicles' charging requirements and captures time-varying customer demand and power generation costs, road congestion, battery depreciation, and power transmission and distribution constraints. We then leverage the model to jointly optimize the operation of both systems. We devise an algorithmic procedure to losslessly reduce the problem size by bundling customer requests, allowing it to be efficiently solved by off-the-shelf linear programming solvers. Next, we show that the socially optimal solution to the joint problem can be enforced as a general equilibrium, and we provide a dual decomposition algorithm that allows self-interested agents to compute the market clearing prices without sharing private information. We assess the performance of the mode by studying a hypothetical AMoD system in Dallas-Fort Worth and its impact on the Texas power network. Lack of coordination between the AMoD system and the power network can cause a 4.4% increase in the price of electricity in Dallas-Fort Worth; conversely, coordination between the AMoD system and the power network could reduce electricity expenditure compared to the case where no cars are present (despite the increased demand for electricity) and yield savings of up $147M/year. Finally, we provide a receding-horizon implementation and assess its performance with agent-based simulations. Collectively, the results of this paper provide a first-of-a-kind characterization of the interaction between electric-powered AMoD systems and the power network, and shed additional light on the economic and societal value of AMoD.Comment: Extended version of the paper presented at Robotics: Science and Systems XIV and accepted by TCNS. In Version 4, the body of the paper is largely rewritten for clarity and consistency, and new numerical simulations are presented. All source code is available (MIT) at https://dx.doi.org/10.5281/zenodo.324165
    corecore