5,220 research outputs found

    Power scalable implementation of artificial neural networks

    No full text
    As the use of Artificial Neural Network (ANN) in mobile embedded devices gets more pervasive, power consumption of ANN hardware is becoming a major limiting factor. Although considerable research efforts are now directed towards low-power implementations of ANN, the issue of dynamic power scalability of the implemented design has been largely overlooked. In this paper, we discuss the motivation and basic principles for implementing power scaling in ANN Hardware. With the help of a simple example, we demonstrate how power scaling can be achieved with dynamic pruning techniques

    Learning to Prune Deep Neural Networks via Layer-wise Optimal Brain Surgeon

    Full text link
    How to develop slim and accurate deep neural networks has become crucial for real- world applications, especially for those employed in embedded systems. Though previous work along this research line has shown some promising results, most existing methods either fail to significantly compress a well-trained deep network or require a heavy retraining process for the pruned deep network to re-boost its prediction performance. In this paper, we propose a new layer-wise pruning method for deep neural networks. In our proposed method, parameters of each individual layer are pruned independently based on second order derivatives of a layer-wise error function with respect to the corresponding parameters. We prove that the final prediction performance drop after pruning is bounded by a linear combination of the reconstructed errors caused at each layer. Therefore, there is a guarantee that one only needs to perform a light retraining process on the pruned network to resume its original prediction performance. We conduct extensive experiments on benchmark datasets to demonstrate the effectiveness of our pruning method compared with several state-of-the-art baseline methods

    Benchmarking Cerebellar Control

    Get PDF
    Cerebellar models have long been advocated as viable models for robot dynamics control. Building on an increasing insight in and knowledge of the biological cerebellum, many models have been greatly refined, of which some computational models have emerged with useful properties with respect to robot dynamics control. Looking at the application side, however, there is a totally different picture. Not only is there not one robot on the market which uses anything remotely connected with cerebellar control, but even in research labs most testbeds for cerebellar models are restricted to toy problems. Such applications hardly ever exceed the complexity of a 2 DoF simulated robot arm; a task which is hardly representative for the field of robotics, or relates to realistic applications. In order to bring the amalgamation of the two fields forwards, we advocate the use of a set of robotics benchmarks, on which existing and new computational cerebellar models can be comparatively tested. It is clear that the traditional approach to solve robotics dynamics loses ground with the advancing complexity of robotic structures; there is a desire for adaptive methods which can compete as traditional control methods do for traditional robots. In this paper we try to lay down the successes and problems in the fields of cerebellar modelling as well as robot dynamics control. By analyzing the common ground, a set of benchmarks is suggested which may serve as typical robot applications for cerebellar models

    Neural networks in geophysical applications

    Get PDF
    Neural networks are increasingly popular in geophysics. Because they are universal approximators, these tools can approximate any continuous function with an arbitrary precision. Hence, they may yield important contributions to finding solutions to a variety of geophysical applications. However, knowledge of many methods and techniques recently developed to increase the performance and to facilitate the use of neural networks does not seem to be widespread in the geophysical community. Therefore, the power of these tools has not yet been explored to their full extent. In this paper, techniques are described for faster training, better overall performance, i.e., generalization,and the automatic estimation of network size and architecture

    Neural Networks for Complex Data

    Full text link
    Artificial neural networks are simple and efficient machine learning tools. Defined originally in the traditional setting of simple vector data, neural network models have evolved to address more and more difficulties of complex real world problems, ranging from time evolving data to sophisticated data structures such as graphs and functions. This paper summarizes advances on those themes from the last decade, with a focus on results obtained by members of the SAMM team of Universit\'e Paris

    Differentiable Sparsification for Deep Neural Networks

    Full text link
    Deep neural networks have relieved a great deal of burden on human experts in relation to feature engineering. However, comparable efforts are instead required to determine effective architectures. In addition, as the sizes of networks have grown overly large, a considerable amount of resources is also invested in reducing the sizes. The sparsification of an over-complete model addresses these problems as it removes redundant components and connections. In this study, we propose a fully differentiable sparsification method for deep neural networks which allows parameters to be zero during training via stochastic gradient descent. Thus, the proposed method can learn the sparsified structure and weights of a network in an end-to-end manner. The method is directly applicable to various modern deep neural networks and imposes minimum modification to existing models. To the best of our knowledge, this is the first fully [sub-]differentiable sparsification method that zeroes out parameters. It provides a foundation for future structure learning and model compression methods
    corecore