21 research outputs found

    Optimality of the Johnson-Lindenstrauss Lemma

    Full text link
    For any integers d,n2d, n \geq 2 and 1/(min{n,d})0.4999<ε<11/({\min\{n,d\}})^{0.4999} < \varepsilon<1, we show the existence of a set of nn vectors XRdX\subset \mathbb{R}^d such that any embedding f:XRmf:X\rightarrow \mathbb{R}^m satisfying x,yX, (1ε)xy22f(x)f(y)22(1+ε)xy22 \forall x,y\in X,\ (1-\varepsilon)\|x-y\|_2^2\le \|f(x)-f(y)\|_2^2 \le (1+\varepsilon)\|x-y\|_2^2 must have m=Ω(ε2lgn). m = \Omega(\varepsilon^{-2} \lg n). This lower bound matches the upper bound given by the Johnson-Lindenstrauss lemma [JL84]. Furthermore, our lower bound holds for nearly the full range of ε\varepsilon of interest, since there is always an isometric embedding into dimension min{d,n}\min\{d, n\} (either the identity map, or projection onto span(X)\mathop{span}(X)). Previously such a lower bound was only known to hold against linear maps ff, and not for such a wide range of parameters ε,n,d\varepsilon, n, d [LN16]. The best previously known lower bound for general ff was m=Ω(ε2lgn/lg(1/ε))m = \Omega(\varepsilon^{-2}\lg n/\lg(1/\varepsilon)) [Wel74, Lev83, Alo03], which is suboptimal for any ε=o(1)\varepsilon = o(1).Comment: v2: simplified proof, also added reference to Lev8

    Time lower bounds for nonadaptive turnstile streaming algorithms

    Full text link
    We say a turnstile streaming algorithm is "non-adaptive" if, during updates, the memory cells written and read depend only on the index being updated and random coins tossed at the beginning of the stream (and not on the memory contents of the algorithm). Memory cells read during queries may be decided upon adaptively. All known turnstile streaming algorithms in the literature are non-adaptive. We prove the first non-trivial update time lower bounds for both randomized and deterministic turnstile streaming algorithms, which hold when the algorithms are non-adaptive. While there has been abundant success in proving space lower bounds, there have been no non-trivial update time lower bounds in the turnstile model. Our lower bounds hold against classically studied problems such as heavy hitters, point query, entropy estimation, and moment estimation. In some cases of deterministic algorithms, our lower bounds nearly match known upper bounds

    Sparser Johnson-Lindenstrauss Transforms

    Get PDF
    We give two different and simple constructions for dimensionality reduction in 2\ell_2 via linear mappings that are sparse: only an O(ε)O(\varepsilon)-fraction of entries in each column of our embedding matrices are non-zero to achieve distortion 1+ε1+\varepsilon with high probability, while still achieving the asymptotically optimal number of rows. These are the first constructions to provide subconstant sparsity for all values of parameters, improving upon previous works of Achlioptas (JCSS 2003) and Dasgupta, Kumar, and Sarl\'{o}s (STOC 2010). Such distributions can be used to speed up applications where 2\ell_2 dimensionality reduction is used.Comment: v6: journal version, minor changes, added Remark 23; v5: modified abstract, fixed typos, added open problem section; v4: simplified section 4 by giving 1 analysis that covers both constructions; v3: proof of Theorem 25 in v2 was written incorrectly, now fixed; v2: Added another construction achieving same upper bound, and added proof of near-tight lower bound for DKS schem

    Coresets-Methods and History: A Theoreticians Design Pattern for Approximation and Streaming Algorithms

    Get PDF
    We present a technical survey on the state of the art approaches in data reduction and the coreset framework. These include geometric decompositions, gradient methods, random sampling, sketching and random projections. We further outline their importance for the design of streaming algorithms and give a brief overview on lower bounding techniques
    corecore