102 research outputs found

    Multiple description video coding for real-time applications using HEVC

    Full text link
    Remote control vehicles require the transmission of large amounts of data, and video is one of the most important sources for the driver. To ensure reliable video transmission, the encoded video stream is transmitted simultaneously over multiple channels. However, this solution incurs a high transmission cost due to the wireless channel's unreliable and random bit loss characteristics. To address this issue, it is necessary to use more efficient video encoding methods that can make the video stream robust to noise. In this paper, we propose a low-complexity, low-latency 2-channel Multiple Description Coding (MDC) solution with an adaptive Instantaneous Decoder Refresh (IDR) frame period, which is compatible with the HEVC standard. This method shows better resistance to high packet loss rates with lower complexity

    High efficiency compression for object detection

    Full text link
    Image and video compression has traditionally been tailored to human vision. However, modern applications such as visual analytics and surveillance rely on computers seeing and analyzing the images before (or instead of) humans. For these applications, it is important to adjust compression to computer vision. In this paper we present a bit allocation and rate control strategy that is tailored to object detection. Using the initial convolutional layers of a state-of-the-art object detector, we create an importance map that can guide bit allocation to areas that are important for object detection. The proposed method enables bit rate savings of 7% or more compared to default HEVC, at the equivalent object detection rate.Comment: The paper is published in IEEE ICASSP 18

    A Decoding-Complexity and Rate-Controlled Video-Coding Algorithm for HEVC

    Get PDF
    Video playback on mobile consumer electronic (CE) devices is plagued by fluctuations in the network bandwidth and by limitations in processing and energy availability at the individual devices. Seen as a potential solution, the state-of-the-art adaptive streaming mechanisms address the first aspect, yet the efficient control of the decoding-complexity and the energy use when decoding the video remain unaddressed. The quality of experience (QoE) of the end-users’ experiences, however, depends on the capability to adapt the bit streams to both these constraints (i.e., network bandwidth and device’s energy availability). As a solution, this paper proposes an encoding framework that is capable of generating video bit streams with arbitrary bit rates and decoding-complexity levels using a decoding-complexity–rate–distortion model. The proposed algorithm allocates rate and decoding-complexity levels across frames and coding tree units (CTUs) and adaptively derives the CTU-level coding parameters to achieve their imposed targets with minimal distortion. The experimental results reveal that the proposed algorithm can achieve the target bit rate and the decoding-complexity with 0.4% and 1.78% average errors, respectively, for multiple bit rate and decoding-complexity levels. The proposed algorithm also demonstrates a stable frame-wise rate and decoding-complexity control capability when achieving a decoding-complexity reduction of 10.11 (%/dB). The resultant decoding-complexity reduction translates into an overall energy-consumption reduction of up to 10.52 (%/dB) for a 1 dB peak signal-to-noise ratio (PSNR) quality loss compared to the HM 16.0 encoded bit streams
    • …
    corecore