123 research outputs found

    Location, Location, Location: Maximizing mmWave LAN Performance through Intelligent Wireless Networking Strategies

    Get PDF
    The main objective of this dissertation is to design and evaluate intelligent techniques to maximize mmWave wireless local-area network (WLAN) performance. To meet the ever-increasing data demand of various bandwidth-hungry applications, we propose techniques to enable consistently ultra-high-rate mmWave communication in the wireless environment. However, the weak diffraction of mmWave signals makes them extremely sensitive to blockage effects caused by real-world obstacles, and this is a primary challenge to overcome for the feasibility of mmWave communications. To this end, we exploit location sensitivity to explore robust mmWave WLAN designs that expedite the full realization of ubiquitous mmWave wireless connectivity. The techniques investigated to exploit location sensitivity are the use of multiple access points (APs), controlled mobility, AP-user association mechanisms, and environment-aware prediction We first develop optimal multi-AP planning approaches to maximize line-of-sight connectivity and aggregate throughput in mmWave WLANs, and then study multi-AP association mechanisms to achieve low-overhead and blockage-robust mmWave wireless communications among multiple users and multiple APs. Furthermore, we explore the potential benefits achievable from AP mobility technology, which yields insights on the best configurations of mobile APs. We also develop an environment-aware link-quality predictor to accurately derive dynamic mmWave link quality due to static blockages and small changes in device locations, which provides a basis for the development of anticipatory networking with proactive resource-allocation schemes. In a complementary direction for evaluating the performance of mmWave networks, we develop and implement advanced features for dense wireless networks that increasingly characterize many mmWave scenarios of interest in the widely-used network simulator ns-3, including a sparse cluster-based wireless channel model that statistically models multi-path components in mmWave WLANs.Ph.D

    Exploiting Device-to-Device Communications to Enhance Spatial Reuse for Popular Content Downloading in Directional mmWave Small Cells

    Full text link
    With the explosive growth of mobile demand, small cells in millimeter wave (mmWave) bands underlying the macrocell networks have attracted intense interest from both academia and industry. MmWave communications in the 60 GHz band are able to utilize the huge unlicensed bandwidth to provide multiple Gbps transmission rates. In this case, device-to-device (D2D) communications in mmWave bands should be fully exploited due to no interference with the macrocell networks and higher achievable transmission rates. In addition, due to less interference by directional transmission, multiple links including D2D links can be scheduled for concurrent transmissions (spatial reuse). With the popularity of content-based mobile applications, popular content downloading in the small cells needs to be optimized to improve network performance and enhance user experience. In this paper, we develop an efficient scheduling scheme for popular content downloading in mmWave small cells, termed PCDS (popular content downloading scheduling), where both D2D communications in close proximity and concurrent transmissions are exploited to improve transmission efficiency. In PCDS, a transmission path selection algorithm is designed to establish multi-hop transmission paths for users, aiming at better utilization of D2D communications and concurrent transmissions. After transmission path selection, a concurrent transmission scheduling algorithm is designed to maximize the spatial reuse gain. Through extensive simulations under various traffic patterns, we demonstrate PCDS achieves near-optimal performance in terms of delay and throughput, and also superior performance compared with other existing protocols, especially under heavy load.Comment: 12 pages, to appear in IEEE Transactions on Vehicular Technolog

    Capacity and Outage of Terahertz Communications with User Micro-mobility and Beam Misalignment

    Get PDF
    User equipment mobility is one of the primary challenges for the design of reliable and efficient wireless links over millimeter-wave and terahertz bands. These high-rate communication systems use directional antennas and therefore have to constantly maintain alignment between transmitter and receiver beams. For terahertz links, envisioned to employ radiation patterns of no more than few degrees wide, not only the macro-scale user mobility (human walking, car driving, etc.) but also the micro-scale mobility - spontaneous shakes and rotations of the device - becomes a severe issue. In this paper, we propose a mathematical framework for the first-order analysis of the effects caused by micro-mobility on the capacity and outage in terahertz communications. The performance of terahertz communications is compared with and without micro-mobility illustrating the difference of up to 1 Tbit/s or 75%. In response to this gap, it is finally shown how the negative effects of the micro-mobility can be partially addressed by a proper adjustment of the terahertz antenna arrays and the period of beam realignment procedure.Comment: Accepted to IEEE Transactions on Vehicular Technology on April 9, 2020. Copyright may be transferred without further notice after which this version may become non-availabl

    Analysis and performance improvement of consumer-grade millimeter wave wireless networks

    Get PDF
    Millimeter-wave (mmWave) networks are one of the main key components in next cellular and WLANs (Wireless Local Area Networks). mmWave networks are capable of providing multi gigabit-per-second rates with very directional low-interference and high spatial reuse links. In 2013, the first 60 GHz wireless solution for WLAN appeared in the market. These were wireless docking stations under theWiGig protocol. Today, in 2019, 60 GHz communications have gained importance with the IEEE 802.11ad amendment with different products on the market, including routers, laptops and wireless Ethernet solutions. More importantly, mmWave networks are going to be used in next generation cellular networks, where smartphones will be using the 28 GHz band. For backbone links, 60 GHz communications have been proposed due to its higher directionality and unlicensed use. This thesis fits in this frame of constant development of themmWave bands to meet the needs of latency and throughput that will be necessary to support future communications. In this thesis, we first characterize the cost-effective design of COTS (commercial off-the-shelf) 60 GHz devices and later we improve their two main weaknesses, which are their low link distance and their non-ideal spatial reuse. It is critical to take into consideration the cost-effective design of COTS devices when designing networking mechanisms. This is why in this thesis we do the first-of-its-kind COTS analysis of 60 GHz devices, studying the D5000 WiGig Docking station and the TP-Link Talon IEEE 802.11ad router. We include static measurements such as the synthesized beam patterns of these devices or an analysis of the area-wide coverage that these devices can fulfill. We perform a spatial reuse analysis and study the performance of these devices under user mobility, showing how robust the link can be under user movement. We also study the feasibility of having flying mmWave links. We mount a 60 GHz COTS device into a drone and perform different measurement campaigns. In this first analysis, we see that these 60 GHz devices have a large performance gap for the achieved communication range as well as a very low spatial reuse. However, they are still suitable for low density WLANs and for next generation aerial micro cell stations. Seeing that these COTS devices are not as directional as literature suggests, we analyze how channels are not as frequency stable as expected due to the large amount of reflected signals. Ideally, frequency selective techniques could be used in these frequency selective channels in order to enlarge the range of these 60 GHz devices. To validate this, we measure real-world 60 GHz indoor channels with a bandwidth of 2 GHz and study their behavior with respect to techniques such as bitloading, subcarrier switch-off, and waterfilling. To this end, we consider a Orthogonal Frequency-Division Multiplexing (OFDM) channel as defined in the IEEE 802.11ad standard and show that in point of fact, these techniques are highly beneficial in mmWave networks allowing for a range extension of up to 50%, equivalent to power savings of up to 7 dB. In order to increase the very limited spatial reuse of these wireless networks, we propose a centralized system that allows the network to carry out the beam training process not only to maximize power but also taking into account other stations in order to minimize interference. This system is designed to work with unmodified clients. We implement and validate our system on commercial off-the-shelf IEEE 802.11ad hardware, achieving an average throughput gain of 24.67% for TCP traffic, and up to a twofold throughput gain in specific cases.Programa de Doctorado en Multimedia y Comunicaciones por la Universidad Carlos III de Madrid y la Universidad Rey Juan CarlosPresidente: Andrés García Saavedra.- Secretario: Matilde Pilar Sánchez Fernández.- Vocal: Ljiljana Simi
    corecore