65,310 research outputs found

    Integrated ultrasonic particle positioning and low excitation light fluorescence imaging

    Get PDF
    A compact hybrid system has been developed to position and detect fluorescent micro-particles by combining a Single Photon Avalanche Diode (SPAD) imager with an acoustic manipulator. The detector comprises a SPAD array, light-emitting diode (LED), lenses, and optical filters. The acoustic device is formed of multiple transducers surrounding an octagonal cavity. By stimulating pairs of transducers simultaneously, an acoustic landscape is created causing fluorescent micro-particles to agglomerate into lines. The fluorescent pattern is excited by a low power LED and detected by the SPAD imager. Our technique combines particle manipulation and visualization in a compact, low power, portable setup

    On the nature of the extremely fast optical rebrightening of the afterglow of GRB 081029

    Get PDF
    Context. After the launch of the Swift satellite, the Gamma-Ray Burst (GRB) optical light-curve smoothness paradigm has been questioned thanks to the faster and better sampled optical follow-up, which has unveiled a very complex behaviour. This complexity is triggering the interest of the whole GRB community. The GROND multi-channel imager is used to study optical and near-infrared (NIR) afterglows of GRBs with unprecedented optical and near-infrared temporal and spectral resolution. The GRB 081029 has a very prominent optical rebrightening event and is an outstanding example of the application of the multi-channel imager to GRB afterglows. Aims. Here we exploit the rich GROND multi-colour follow-up of GRB 081029 combined with XRT observations to study the nature of late-time rebrightenings that appear in the optical-NIR light-curves of some GRB afterglows. Methods. We analyse the optical and NIR observations obtained with the seven-channel Gamma-Ray burst Optical and Near-infrared Detector (GROND) at the 2.2 m MPI/ESO telescope and the X-ray data obtained with the XRT telescope on board the Swift observatory. The multi-wavelength temporal and spectral evolution is discussed in the framework of different physical models. Results. The extremely steep optical and NIR rebrightening observed in GRB 081029 cannot be explained in the framework of the standard forward shock afterglow model. The absence of a contemporaneous X-ray rebrightening and the evidence of a strong spectral evolution in the optical-NIR bands during the rise suggest two separate components that dominate in the early and late-time lightcurves, respectively. The steepness of the optical rise cannot be explained even in the framework of the alternative scenarios proposed in the literature unless a late-time activity of the central engine is assumed.Comment: 9 pages, 7 figures, accepted for publication in Astronomy and Astrophysic

    The Infrared Imaging Spectrograph (IRIS) for TMT: optical design of IRIS imager with "Co-axis double TMA"

    Get PDF
    IRIS (InfraRed Imaging Spectrograph) is one of the first-generation instruments for the Thirty Meter Telescope (TMT). IRIS is composed of a combination of near-infrared (0.84--2.4 μ\mum) diffraction limited imager and integral field spectrograph. To achieve near-diffraction limited resolutions in the near-infrared wavelength region, IRIS uses the advanced adaptive optics system NFIRAOS (Narrow Field Infrared Adaptive Optics System) and integrated on-instrument wavefront sensors (OIWFS). However, IRIS itself has challenging specifications. First, the overall system wavefront error should be less than 40 nm in Y, z, J, and H-band and 42 nm in K-band over a 34.0 ×\times 34.0 arcsecond field of view. Second, the throughput of the imager components should be more than 42 percent. To achieve the extremely low wavefront error and high throughput, all reflective design has been newly proposed. We have adopted a new design policy called "Co-Axis double-TMA", which cancels the asymmetric aberrations generated by "collimator/TMA" and "camera/TMA" efficiently. The latest imager design meets all specifications, and, in particular, the wavefront error is less than 17.3 nm and throughput is more than 50.8 percent. However, to meet the specification of wavefront error and throughput as built performance, the IRIS imager requires both mirrors with low surface irregularity after high-reflection coating in cryogenic and high-level Assembly Integration and Verification (AIV). To deal with these technical challenges, we have done the tolerance analysis and found that total pass rate is almost 99 percent in the case of gauss distribution and more than 90 percent in the case of parabolic distribution using four compensators. We also have made an AIV plan and feasibility check of the optical elements. In this paper, we will present the details of this optical system.Comment: 18 pages, 14 figures, Proceeding 9908-386 of the SPIE Astronomical Telescopes + Instrumentation 201

    RETROCAM: A Versatile Optical Imager for Synoptic Studies

    Full text link
    We present RETROCAM, an auxiliary CCD camera that can be rapidly inserted into the optical beam of the MDM 2.4m telescope. The speed and ease of reconfiguring the telescope to use the imager and a straightforward user interface permit the camera to be used during the course of other observing programs. This in turn encourages RETROCAM's use for a variety of monitoring projects.Comment: 6 pages, 6 figures, Accepted by A

    A millimeter-wave kinetic inductance detector camera for long-range imaging through optical obscurants

    Get PDF
    Millimeter-wave imaging provides a promising option for long-range target detection through optical obscurants such as fog, which often occur in marine environments. Given this motivation, we are currently developing a 150 GHz polarization-sensitive imager using a relatively new type of superconducting pair-breaking detector, the kinetic inductance detector (KID). This imager will be paired with a 1.5 m telescope to obtain an angular resolution of 0.09° over a 3.5° field of view using 3,840 KIDs. We have fully characterized a prototype KID array, which shows excellent performance with noise strongly limited by the irreducible fluctuations from the ambient temperature background. Full-scale KID arrays are now being fabricated and characterized for a planned demonstration in a maritime environment later this year

    The InfraRed Imaging Spectrograph (IRIS) for TMT: photometric precision and ghost analysis

    Get PDF
    The InfraRed Imaging Spectrograph (IRIS) is a first-light instrument for the Thirty Meter Telescope (TMT) that will be used to sample the corrected adaptive optics field by NFIRAOS with a near-infrared (0.8 - 2.4 μ\mum) imaging camera and Integral Field Spectrograph (IFS). In order to understand the science case specifications of the IRIS instrument, we use the IRIS data simulator to characterize photometric precision and accuracy of the IRIS imager. We present the results of investigation into the effects of potential ghosting in the IRIS optical design. Each source in the IRIS imager field of view results in ghost images on the detector from IRIS's wedge filters, entrance window, and Atmospheric Dispersion Corrector (ADC) prism. We incorporated each of these ghosts into the IRIS simulator by simulating an appropriate magnitude point source at a specified pixel distance, and for the case of the extended ghosts redistributing flux evenly over the area specified by IRIS's optical design. We simulate the ghosting impact on the photometric capabilities, and found that ghosts generally contribute negligible effects on the flux counts for point sources except for extreme cases where ghosts coalign with a star of Δ\Deltam>>2 fainter than the ghost source. Lastly, we explore the photometric precision and accuracy for single sources and crowded field photometry on the IRIS imager.Comment: SPIE 2018, 14 pages, 14 figures, 4 tables, Proceedings of SPIE 10702-373, Ground-based and Airborne Instrumentation for Astronomy VII, 10702A7 (16 July 2018

    The Mid-Infrared Instrument for the James Webb Space Telescope, III: MIRIM, The MIRI Imager

    Get PDF
    In this article, we describe the MIRI Imager module (MIRIM), which provides broad-band imaging in the 5 - 27 microns wavelength range for the James Webb Space Telescope. The imager has a 0"11 pixel scale and a total unobstructed view of 74"x113". The remainder of its nominal 113"x113" field is occupied by the coronagraphs and the low resolution spectrometer. We present the instrument optical and mechanical design. We show that the test data, as measured during the test campaigns undertaken at CEA-Saclay, at the Rutherford Appleton Laboratory, and at the NASA Goddard Space Flight Center, indicate that the instrument complies with its design requirements and goals. We also discuss the operational requirements (multiple dithers and exposures) needed for optimal scientific utilization of the MIRIM.Comment: 29 pages, 9 figure
    corecore