130 research outputs found

    Enhanced Interest Aware PeopleRank for Opportunistic Mobile Social Networks

    Get PDF
    Network infrastructures are being continuously challenged by increased demand, resource-hungry applications, and at times of crisis when people need to work from homes such as the current Covid-19 epidemic situation, where most of the countries applied partial or complete lockdown and most of the people worked from home. Opportunistic Mobile Social Networks (OMSN) prove to be a great candidate to support existing network infrastructures. However, OMSNs have copious challenges comprising frequent disconnections and long delays. we aim to enhance the performance of OMSNs including delivery ratio and delay. We build upon an interest-aware social forwarding algorithm, namely Interest Aware PeopleRank (IPeR). We explored three pillars for our contribution, which encompass (1) inspect more than one hop (multiple hops) based on IPeR (MIPeR), (2) by embracing directional forwarding (Directional-IPeR), and (3) by utilizing a combination of Directional forwarding and multi-hop forwarding (DMIPeR). For Directional-IPeR, different values of the tolerance factor of IPeR, such as 25% and 75%, are explored to inspect variations of Directional-IPeR. Different interest distributions and users’ densities are simulated using the Social-Aware Opportunistic Forwarding Simulator (SAROS). The results show that (1) adding multiple hops to IPeR enhanced the delivery ratio, number of reached interested forwarders, and delay slightly. However, it increased the cost and decreased F-measure hugely. Consequently, there is no significant gain in these algorithms. (2) Directional-IPeR-75 performed generally better than IPeR in delivery ratio, and the number of reached interested forwarders. Besides, when some of the uninterested forwarders did not participate in messages delivery, which is a realistic behavior, the performance is enhanced and performed better generally in all metrics compared to IPeR. (3) Adding multiple hops to directional guided IPeR did not gain any enhancement. (4) Directional-IPeR-75 performs better in high densities in all metrics except delay. Even though, it enhances delay in sparse environments. Consequently, it can be utilized in disastrous areas, in which few people are with low connectivity and spread over a big area. In addition, it can be used in rural areas as well where there is no existing networks

    Exploiting Mobile Social Networks from Temporal Perspective:A Survey

    Get PDF
    With the popularity of smart mobile devices, information exchange between users has become more and more frequent, and Mobile Social Networks (MSNs) have attracted significant attention in many research areas. Nowadays, discovering social relationships among people, as well as detecting the evolution of community have become hotly discussed topics in MSNs. One of the major features of MSNs is that the network topology changes over time. Therefore, it is not accurate to depict the social relationships of people based on a static network. In this paper, we present a survey of this emerging field from a temporal perspective. The state-of-the-art research of MSNs is reviewed with focus on four aspects: social property, time-varying graph, temporal social property, and temporal social properties-based applications. Some important open issues with respect to MSNs are discussed

    A hybrid analysis of LBSN data to early detect anomalies in crowd dynamics

    Get PDF
    Undoubtedly, Location-based Social Networks (LBSNs) provide an interesting source of geo-located data that we have previously used to obtain patterns of the dynamics of crowds throughout urban areas. According to our previous results, activity in LBSNs reflects the real activity in the city. Therefore, unexpected behaviors in the social media activity are a trustful evidence of unexpected changes of the activity in the city. In this paper we introduce a hybrid solution to early detect these changes based on applying a combination of two approaches, the use of entropy analysis and clustering techniques, on the data gathered from LBSNs. In particular, we have performed our experiments over a data set collected from Instagram for seven months in New York City, obtaining promising results.This work is funded by: the European Regional Development Fund (ERDF) and the Galician Regional Government under agreement for funding the Atlantic Research Center for Information and Communication Technologies (AtlantTIC), Spain, the Spanish Ministry of Economy and Competitiveness under the National Science Program (TEC2014-54335-C4-3-R, TEC2014-54335-C4-2-R, TEC2017-84197-C4-3-R and TEC2017-84197-C4-2-R), and by the Madrid Regional Government eMadrid Excellence Network, Spain (S2013/ICE-2715)

    A hybrid analysis of LBSN data to early detect anomalies in crowd dynamics

    Get PDF
    Undoubtedly, Location-based Social Networks (LBSNs) provide an interesting source of geo-located data that we have previously used to obtain patterns of the dynamics of crowds throughout urban areas. According to our previous results, activity in LBSNs reflects the real activity in the city. Therefore, unexpected behaviors in the social media activity are a trustful evidence of unexpected changes of the activity in the city. In this paper we introduce a hybrid solution to early detect these changes based on applying a combination of two approaches, the use of entropy analysis and clustering techniques, on the data gathered from LBSNs. In particular, we have performed our experiments over a data set collected from Instagram for seven months in New York City, obtaining promising results.Ministerio de Economía y Competitividad | Ref. TEC2014-54335-C4-2-RMinisterio de Economía y Competitividad | Ref. TEC2014-54335-C4-3-RAgencia Estatal de Investigación | Ref. TEC2017-84197-C4-2-RAgencia Estatal de Investigación | Ref. TEC2017-84197-C4-3-

    Distributed scheduling algorithms for LoRa-based wide area cyber-physical systems

    Get PDF
    Low Power Wide Area Networks (LPWAN) are a class of wireless communication protocols that work over long distances, consume low power and support low datarates. LPWANs have been designed for monitoring applications, with sparse communication from nodes to servers and sparser from servers to nodes. Inspite of their initial design, LPWANs have the potential to target applications with higher and stricter requirements like those of Cyber-Physical Systems (CPS). Due to their long-range capabilities, LPWANs can specifically target CPS applications distributed over a wide-area, which is referred to as Wide-Area CPS (WA-CPS). Augmenting WA-CPSs with wireless communication would allow for more flexible, low-cost and easily maintainable deployment. However, wireless communications come with problems like reduced reliability and unpredictable latencies, making them harder to use for CPSs. With this intention, this thesis explores the use of LPWANs, specifically LoRa, to meet the communication and control requirements of WA-CPSs. The thesis focuses on using LoRa due to its high resilience to noise, several communication parameters to choose from and a freely modifiable communication stack and servers making it ideal for research and deployment. However, LoRaWAN suffers from low reliability due to its ALOHA channel access method. The thesis posits that "Distributed algorithms would increase the protocol's reliability allowing it to meet the requirements of WA-CPSs". Three different application scenarios are explored in this thesis that leverage unexplored aspects of LoRa to meet their requirements. The application scenarios are delay-tolerant vehicular networks, multi-stakeholder WA-CPS deployments and water distribution networks. The systems use novel algorithms to facilitate communication between the nodes and gateways to ensure a highly reliable system. The results outperform state-of-art techniques to prove that LoRa is currently under-utilised and can be used for CPS applications.Open Acces
    • …
    corecore