83,089 research outputs found

    Opinion Dynamics in Social Networks through Mean-Field Games

    Get PDF
    Emulation, mimicry, and herding behaviors are phenomena that are observed when multiple social groups interact. To study such phenomena, we consider in this paper a large population of homogeneous social networks. Each such network is characterized by a vector state, a vector-valued controlled input and a vector-valued exogenous disturbance. The controlled input of each network is to align its state to the mean distribution of other networks’ states in spite of the actions of the disturbance. One of the contributions of this paper is a detailed analysis of the resulting mean field game for the cases of both polytopic and L2 bounds on controls and disturbances. A second contribution is the establishment of a robust mean-field equilibrium, that is, a solution including the worst-case value function, the state feedback best-responses for the controlled inputs and worst-case disturbances, and a density evolution. This solution is characterized by the property that no player can benefit from a unilateral deviation even in the presence of the disturbance. As a third contribution, microscopic and macroscopic analyses are carried out to show convergence properties of the population distribution using stochastic stability theory

    Mean-Field-Type Games in Engineering

    Full text link
    A mean-field-type game is a game in which the instantaneous payoffs and/or the state dynamics functions involve not only the state and the action profile but also the joint distributions of state-action pairs. This article presents some engineering applications of mean-field-type games including road traffic networks, multi-level building evacuation, millimeter wave wireless communications, distributed power networks, virus spread over networks, virtual machine resource management in cloud networks, synchronization of oscillators, energy-efficient buildings, online meeting and mobile crowdsensing.Comment: 84 pages, 24 figures, 183 references. to appear in AIMS 201

    The Naming Game in Social Networks: Community Formation and Consensus Engineering

    Full text link
    We study the dynamics of the Naming Game [Baronchelli et al., (2006) J. Stat. Mech.: Theory Exp. P06014] in empirical social networks. This stylized agent-based model captures essential features of agreement dynamics in a network of autonomous agents, corresponding to the development of shared classification schemes in a network of artificial agents or opinion spreading and social dynamics in social networks. Our study focuses on the impact that communities in the underlying social graphs have on the outcome of the agreement process. We find that networks with strong community structure hinder the system from reaching global agreement; the evolution of the Naming Game in these networks maintains clusters of coexisting opinions indefinitely. Further, we investigate agent-based network strategies to facilitate convergence to global consensus.Comment: The original publication is available at http://www.springerlink.com/content/70370l311m1u0ng3
    • …
    corecore