9 research outputs found

    Minimizing bed occupancy variance by scheduling patients under uncertainty

    Get PDF
    International audienceIn this paper we consider the problem of scheduling patients in allocated surgery blocks in a Master Surgical Schedule. We pay attention to both the available surgery blocks and the bed occupancy in the hospital wards. More specifically, large probabilities of overtime in each surgery block are undesirable and costly, while large fluctuations in the number of used beds requires extra buffer capacity and makes the staff planning more challenging. The stochastic nature of surgery durations and length of stay on a ward hinders the use of classical techniques. Transforming the stochastic problem into a deterministic problem does not result into practically feasible solutions. In this paper we develop a technique to solve the stochastic scheduling problem, whose primary objective it to minimize variation in the necessary bed capacity, while maximizing the number of patients operated, and minimizing the maximum waiting time, and guaranteeing a small probability of overtime in surgery blocks. The method starts with solving an Integer Linear Programming (ILP) formulation of the problem, and then simulation and local search techniques are applied to guarantee small probabilities of overtime and to improve upon the ILP solution. Numerical experiments applied to a Dutch hospital show promising results

    Dynamic Monitoring and Control of Irreversible Chronic Diseases with Application to Glaucoma

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/149269/1/poms12975_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149269/2/poms12975-sup-0001-Appendix.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149269/3/poms12975.pd

    Physician-Customized Strategies for Reducing Outpatient Waiting Time in South Korea Using Queueing Theory and Probabilistic Metamodels

    Get PDF
    The time a patient spends waiting to be seen by a healthcare professional is an important determinant of patient satisfaction in outpatient care. Hence, it is crucial to identify parameters that affect the waiting time and optimize it accordingly. First, statistical analysis was used to validate the effective parameters. However, no parameters were found to have significant effects with respect to the entire outpatient department or to each department. Therefore, we studied the improvement of patient waiting times by analyzing and optimizing effective parameters for each physician. Queueing theory was used to calculate the probability that patients would wait for more than 30 min for a consultation session. Using this result, we built metamodels for each physician, formulated an effective method to optimize the problem, and found a solution to minimize waiting time using a non-dominated sorting genetic algorithm (NSGA-II). On average, we obtained a 30% decrease in the probability that patients would wait for a long period. This study shows the importance of customized improvement strategies for each physician.ope

    Minimizing bed occupancy variance by scheduling patients under uncertainty

    Get PDF
    International audienceIn this paper we consider the problem of scheduling patients in allocated surgery blocks in a Master Surgical Schedule. We pay attention to both the available surgery blocks and the bed occupancy in the hospital wards. More specifically, large probabilities of overtime in each surgery block are undesirable and costly, while large fluctuations in the number of used beds requires extra buffer capacity and makes the staff planning more challenging. The stochastic nature of surgery durations and length of stay on a ward hinders the use of classical techniques. Transforming the stochastic problem into a deterministic problem does not result into practically feasible solutions. In this paper we develop a technique to solve the stochastic scheduling problem, whose primary objective it to minimize variation in the necessary bed capacity, while maximizing the number of patients operated, and minimizing the maximum waiting time, and guaranteeing a small probability of overtime in surgery blocks. The method starts with solving an Integer Linear Programming (ILP) formulation of the problem, and then simulation and local search techniques are applied to guarantee small probabilities of overtime and to improve upon the ILP solution. Numerical experiments applied to a Dutch hospital show promising results

    OPERATIONS RESEARCH IN HEALTH SERVICES: A SUCCESS, OR IS MORE RESEARCH NECESSARY?

    No full text
    corecore