34,452 research outputs found

    To enhance collaborative learning and practice network knowledge with a virtualization laboratory and online synchronous discussion

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 Internatinal License.Recently, various computer networking courses have included additional laboratory classes in order to enhance students' learning achievement. However, these classes need to establish a suitable laboratory where each student can connect network devices to configure and test functions within different network topologies. In this case, the Linux operating system can be used to operate network devices and the virtualization technique can include multiple OSs for supporting a significant number of students. In previous research, the virtualization application was successfully applied in a laboratory, but focused only on individual assignments. The present study extends previous research by designing the Networking Virtualization-Based Laboratory (NVBLab), which requires collaborative learning among the experimental students. The students were divided into an experimental group and a control group for the experiment. The experimental group performed their laboratory assignments using NVBLab, whereas the control group completed them on virtual machines (VMs) that were installed on their personal computers. Moreover, students using NVBLab were provided with an online synchronous discussion (OSD) feature that enabled them to communicate with others. The laboratory assignments were divided into two parts: Basic Labs and Advanced Labs. The results show that the experimental group significantly outperformed the control group in two Advanced Labs and the post-test after Advanced Labs. Furthermore, the experimental group's activities were better than those of the control group based on the total average of the command count per laboratory. Finally, the findings of the interviews and questionnaires with the experimental group reveal that NVBLab was helpful during and after laboratory class

    The Ultralight project: the network as an integrated and managed resource for data-intensive science

    Get PDF
    Looks at the UltraLight project which treats the network interconnecting globally distributed data sets as a dynamic, configurable, and closely monitored resource to construct a next-generation system that can meet the high-energy physics community's data-processing, distribution, access, and analysis needs

    The Design and Demonstration of the Ultralight Testbed

    Get PDF
    In this paper we present the motivation, the design, and a recent demonstration of the UltraLight testbed at SC|05. The goal of the Ultralight testbed is to help meet the data-intensive computing challenges of the next generation of particle physics experiments with a comprehensive, network- focused approach. UltraLight adopts a new approach to networking: instead of treating it traditionally, as a static, unchanging and unmanaged set of inter-computer links, we are developing and using it as a dynamic, configurable, and closely monitored resource that is managed from end-to-end. To achieve its goal we are constructing a next-generation global system that is able to meet the data processing, distribution, access and analysis needs of the particle physics community. In this paper we will first present early results in the various working areas of the project. We then describe our experiences of the network architecture, kernel setup, application tuning and configuration used during the bandwidth challenge event at SC|05. During this Challenge, we achieved a record-breaking aggregate data rate in excess of 150 Gbps while moving physics datasets between many Grid computing sites

    Application of a virtual scientific experiment model in different educational contexts

    No full text
    E-learning practice is continuously using experimentation in order to enhance the basic information transfer model where knowledge is passed from the system/ tutors to the students. Boosting student productivity through on-line experimentation is not simple since many organizational, educational and technological issues need to be dealt with. This work describes the application of a Learning Model for Virtual Scientific Experiments (VSEs) in two different scenarios: Information and Communication Technologies and Physics. As part of the first, a VSE for Wireless Sensor Networks was specified and deployed while the second involved the specification and design of a collaborative VSE for physics experiments. Preliminary implementation and deployment results are also discussed

    The Motivation, Architecture and Demonstration of Ultralight Network Testbed

    Get PDF
    In this paper we describe progress in the NSF-funded Ultralight project and a recent demonstration of Ultralight technologies at SuperComputing 2005 (SC|05). The goal of the Ultralight project is to help meet the data-intensive computing challenges of the next generation of particle physics experiments with a comprehensive, network-focused approach. Ultralight adopts a new approach to networking: instead of treating it traditionally, as a static, unchanging and unmanaged set of inter-computer links, we are developing and using it as a dynamic, configurable, and closely monitored resource that is managed from end-to-end. Thus we are constructing a next-generation global system that is able to meet the data processing, distribution, access and analysis needs of the particle physics community. In this paper we present the motivation for, and an overview of, the Ultralight project. We then cover early results in the various working areas of the project. The remainder of the paper describes our experiences of the Ultralight network architecture, kernel setup, application tuning and configuration used during the bandwidth challenge event at SC|05. During this Challenge, we achieved a record-breaking aggregate data rate in excess of 150 Gbps while moving physics datasets between many sites interconnected by the Ultralight backbone network. The exercise highlighted the benefits of Ultralight's research and development efforts that are enabling new and advanced methods of distributed scientific data analysis

    Container network functions: bringing NFV to the network edge

    Get PDF
    In order to cope with the increasing network utilization driven by new mobile clients, and to satisfy demand for new network services and performance guarantees, telecommunication service providers are exploiting virtualization over their network by implementing network services in virtual machines, decoupled from legacy hardware accelerated appliances. This effort, known as NFV, reduces OPEX and provides new business opportunities. At the same time, next generation mobile, enterprise, and IoT networks are introducing the concept of computing capabilities being pushed at the network edge, in close proximity of the users. However, the heavy footprint of today's NFV platforms prevents them from operating at the network edge. In this article, we identify the opportunities of virtualization at the network edge and present Glasgow Network Functions (GNF), a container-based NFV platform that runs and orchestrates lightweight container VNFs, saving core network utilization and providing lower latency. Finally, we demonstrate three useful examples of the platform: IoT DDoS remediation, on-demand troubleshooting for telco networks, and supporting roaming of network functions
    • …
    corecore