803 research outputs found

    A Review of the Open Educational Resources (OER) Movement: Achievements, Challenges, and New Opportunities

    Get PDF
    Examines the state of the foundation's efforts to improve educational opportunities worldwide through universal access to and use of high-quality academic content

    Deep Learning Techniques for Music Generation -- A Survey

    Full text link
    This paper is a survey and an analysis of different ways of using deep learning (deep artificial neural networks) to generate musical content. We propose a methodology based on five dimensions for our analysis: Objective - What musical content is to be generated? Examples are: melody, polyphony, accompaniment or counterpoint. - For what destination and for what use? To be performed by a human(s) (in the case of a musical score), or by a machine (in the case of an audio file). Representation - What are the concepts to be manipulated? Examples are: waveform, spectrogram, note, chord, meter and beat. - What format is to be used? Examples are: MIDI, piano roll or text. - How will the representation be encoded? Examples are: scalar, one-hot or many-hot. Architecture - What type(s) of deep neural network is (are) to be used? Examples are: feedforward network, recurrent network, autoencoder or generative adversarial networks. Challenge - What are the limitations and open challenges? Examples are: variability, interactivity and creativity. Strategy - How do we model and control the process of generation? Examples are: single-step feedforward, iterative feedforward, sampling or input manipulation. For each dimension, we conduct a comparative analysis of various models and techniques and we propose some tentative multidimensional typology. This typology is bottom-up, based on the analysis of many existing deep-learning based systems for music generation selected from the relevant literature. These systems are described and are used to exemplify the various choices of objective, representation, architecture, challenge and strategy. The last section includes some discussion and some prospects.Comment: 209 pages. This paper is a simplified version of the book: J.-P. Briot, G. Hadjeres and F.-D. Pachet, Deep Learning Techniques for Music Generation, Computational Synthesis and Creative Systems, Springer, 201

    Open educational resources : conversations in cyberspace

    Get PDF
    172 p. : ill. ; 25 cm.Libro ElectrónicoEducation systems today face two major challenges: expanding the reach of education and improving its quality. Traditional solutions will not suffice, especially in the context of today's knowledge-intensive societies. The Open Educational Resources movement offers one solution for extending the reach of education and expanding learning opportunities. The goal of the movement is to equalize access to knowledge worldwide through openly and freely available online high-quality content. Over the course of two years, the international community came together in a series of online discussion forums to discuss the concept of Open Educational Resources and its potential. This publication makes the background papers and reports from those discussions available in print.--Publisher's description.A first forum : presenting the open educational resources (OER) movement. Open educational resources : an introductory note / Sally Johnstone -- Providing OER and related issues : an introductory note / Anne Margulies, ... [et al.] -- Using OER and related issues : in introductory note / Mohammed-Nabil Sabry, ... [et al.] -- Discussion highlights / Paul Albright -- Ongoing discussion. A research agenda for OER : discussion highlights / Kim Tucker and Peter Bateman -- A 'do-it-yourself' resource for OER : discussion highlights / Boris Vukovic -- Free and open source software (FOSS) and OER -- A second forum : discussing the OECD study of OER. Mapping procedures and users / Jan Hylén -- Why individuals and institutions share and use OER / Jan Hylén -- Discussion highlights / Alexa Joyce -- Priorities for action. Open educational resources : the way forward / Susan D'Antoni

    Developing a Coherent Cyberinfrastructure from Local Campus to National Facilities: Challenges and Strategies

    Get PDF
    A fundamental goal of cyberinfrastructure (CI) is the integration of computing hardware, software, and network technology, along with data, information management, and human resources to advance scholarship and research. Such integration creates opportunities for researchers, educators, and learners to share ideas, expertise, tools, and facilities in new and powerful ways that cannot be realized if each of these components is applied independently. Bridging the gap between the reality of CI today and its potential in the immediate future is critical to building a balanced CI ecosystem that can support future scholarship and research. This report summarizes the observations and recommendations from a workshop in July 2008 sponsored by the EDUCAUSE Net@EDU Campus Cyberinfrastructure Working Group (CCI) and the Coalition for Academic Scientific Computation (CASC). The invitational workshop was hosted at the University Place Conference Center on the IUPUI campus in Indianapolis. Over 50 individuals representing a cross-section of faculty, senior campus information technology leaders, national lab directors, and other CI experts attended. The workshop focused on the challenges that must be addressed to build a coherent CI from the local to the national level, and the potential opportunities that would result. Both the organizing committee and the workshop participants hope that some of the ideas, suggestions, and recommendations in this report will take hold and be implemented in the community. The goal is to create a better, more supportive, more usable CI environment in the future to advance both scholarship and research

    The UNIVERSIA/UPM OPEN COURSEWARE iniciative to share the knowledge

    Get PDF
    This paper shows the most innovative aspects of the Universia/UPM OpenCourseWare (OCW) project referred to globalization of higher education in a Latin-American environment and the sharing of knowledge. The MIT idea of offering, through Internet, the available educational resources in an open way has been spread all over the world and many Universities and Institutions have joint this initiative. Universia, Institution which gathers one of the biggest world universities net, has launched an OCW site, with the technical collaboration of the Technical University of Madrid (UPM) who is working as the main university project promoter. The OCW-Universia site has one of the greatest growth rates at present and is facing new challenges and developments which will allow its expansion as a reference within an international context

    Harnessing Openness to Improve Research, Teaching and Learning in Higher Education

    Get PDF
    Colleges and universities should embrace the concept of increased openness in the use and sharing of information to improve higher education. That is the core recommendation of this report. The report was produced by CED's Digital Connections Council (DCC), a group of information technology experts that advises CED's business leaders on cutting-edge technologies

    Open Educational Practices and Resources. OLCOS Roadmap 2012

    Get PDF
    As a Transversal Action under the European eLearning Programme, the Open e-Learning Content Observatory Services (OLCOS) project carries out a set of activities that aim at fostering the creation, sharing and re-use of Open Educational Resources (OER) in Europe and beyond.OER are understood to comprise content for teaching and learning, software-based tools and services, and licenses that allow for open development and re-use of content, tools and services.The OLCOS road mapping work was conducted to provide decision makers with an overview of current and likely future developments in OER and recommendations on how various challenges in OER could be addressed.While the results of the road mapping will provide some basis for policy and institutional planning, strategic leadership and decision making is needed for implementing measures that are likely to promote a further uptake of open educational practices and resources.OER are understood to be an important element of policies that want to leverage education and lifelong learning for the knowledge economy and society. However, OLCOS emphasises that it is crucial to also promote innovation and change in educational practices.In particular, OLCOS warns that delivering OER to the still dominant model of teachercentred knowledge transfer will have little effect on equipping teachers, students and workers with the competences, knowledge and skills to participate successfully in the knowledge economy and society.This report emphasises the need to foster open practices of teaching and learning that are informed by a competency-based educational framework. However, it is understood that a shift towards such practices will only happen in the longer term in a step-by-step process. Bringing about this shift will require targeted and sustained efforts by educational leaders at all levels

    Mechanosensitivity and Neural Adaptation in Human Somatosensory System

    Get PDF
    Magnetoencephalography (MEG) was utilized to characterize the adaptation in the somatosensory cortical network due to repeated cutaneous tactile stimulation applied unilaterally on the face and hand using a custom-built pneumatic stimulator called the TAC-Cell. Face stimulation invoked neuromagnetic responses reflecting cortical activity in the contralateral primary somatosensory cortex (SI), while hand stimulation resulted in robust contralateral SI and posterior parietal cortex (PPC) activation. There was also activity observed in regions of the secondary somatosensory cortical areas (SII), although with a reduced amplitude and higher variability across subjects. There was a significant difference in adaptation rates between SI, and higher-order sensory cortices like the PPC for hand stimulation. Adaptation was also significantly dependent on the stimulus frequency and pulse index number within the stimulus train for both hand and face stimulation. The latency of the peak responses was significantly dependent on stimulus site and response component (SI, PPC). The difference in the latency of peak SI and PPC responses can be reflective of a hierarchical serial-processing network in the somatosensory cortex. Age- and sex-related changes of vibrotactile sensitivity in the orofacial and hand skin surfaces of healthy adults was demonstrated using an established psychophysical protocol. Vibrotactile threshold sensitivity increased as a function of age for finger stimulation, but remained unaltered for the face. Increase in the finger threshold sensitivity is due to age-related changes in the number and morphology of Pacinian corpuscles (absent in the face). Vibrotactile threshold sensitivity is significantly dependent on stimulation site, stimulus frequency, and sex of the participant. These differences are presumably due to dissimilarities in the type and density of mechanoreceptors present in the face and hand. A novel-method was developed to couple the use of fiber-optic displacement sensors with the pneumatic stimulator built in our laboratory called the TAC-Cell. This displacement sensor which is commonly used in industrial applications was successfully utilized to characterize the skin response to TAC-Cell stimulation. Skin displacement was significantly dependent on input stimulus amplitudes and varied as a function of the participants' sex. Power spectrum analysis and rise-fall time measurement of the skin-displacement showed that the TAC-Cell stimulus consists of a spectrally rich, high velocity signal that is capable of evoking a cortical response due to stimulation of the medial-lemniscus and trigeminal pathways

    Opening Up Education: The Collective Advancement of Education through Open Technology, Open Content, and Open Knowledge

    Get PDF
    Given the abundance of open education initiatives that aim to make educational assets freely available online, the time seems ripe to explore the potential of open education to transform the economics and ecology of education. Despite the diversity of tools and resources already available -- from well-packaged course materials to simple games, for students, self-learners, faculty, and educational institutions -- we have yet to take full advantage of shared knowledge about how these are being used, what local innovations are emerging, and how to learn from and build on the experiences of others. Opening Up Education argues that we must develop not only the technical capability but also the intellectual capacity for transforming tacit pedagogical knowledge into commonly usable and visible knowledge: by providing incentives for faculty to use (and contribute to) open education goods, and by looking beyond institutional boundaries to connect a variety of settings and open source entrepreneurs.These essays by leaders in open education describe successes, challenges, and opportunities they have found in a range of open education initiatives. They approach -- from both macro and micro perspectives -- the central question of how open education tools, resources, and knowledge can improve the quality of education. The contributors (from leading foundations, academic institutions, associations, and projects) discuss the strategic underpinnings of their efforts first in terms of technology, then content, and finally knowledge. They also address the impact of their projects, and how close they come to achieving a vision of sustainable, transformative educational opportunities that amounts to much more than pervasive technology.Contributors:Richard Baraniuk, Randy Bass, Trent Batson, Dan Bernstein, John Seely Brown, Barbara Cambridge, Tom Carey, Catherine Casserly, James Dalziel, Bernadine Chuck Fong, Richard Gale, Gerard Hanley, Diane Harley, Mary Huber, Pat Hutchings, Toru Iiyoshi, David Kahle, M. S. Vijay Kumar, Andy Lane, Diana Laurillard, Stuart Lee, Steve Lerman, Marilyn Lombardi, Phil Long, Clifford Lynch, Christopher Mackie, Anne Margulies, Owen McGrath, Flora McMartin, Shigeru Miyagawa, Diana Oblinger, Neeru Paharia, Cheryl Richardson, Marshall Smith, Candace Thille, Edward Walker, and David WileyAbout the Editors:Toru Iiyoshi is Senior Scholar and Director of the Knowledge Media Lab at the Carnegie Foundation.M. S. Vijay Kumar is Senior Associate Dean and Director of the Office of Educational Innovation and Technology at MIT
    corecore