2,152 research outputs found

    Context Generation Improves Open Domain Question Answering

    Full text link
    Closed-book question answering (QA) requires a model to directly answer an open-domain question without access to any external knowledge. Prior work on closed-book QA either directly finetunes or prompts a pretrained language model (LM) to leverage the stored knowledge. However, they do not fully exploit the parameterized knowledge. To address this issue, we propose a two-stage, closed-book QA framework which employs a coarse-to-fine approach to extract relevant knowledge and answer a question. Our approach first generates a related context for a given question by prompting a pretrained LM. We then prompt the same LM for answer prediction using the generated context and the question. Additionally, to eliminate failure caused by context uncertainty, we marginalize over generated contexts. Experimental results on three QA benchmarks show that our method significantly outperforms previous closed-book QA methods (e.g. exact matching 68.6% vs. 55.3%), and is on par with open-book methods that exploit external knowledge sources (e.g. 68.6% vs. 68.0%). Our method is able to better exploit the stored knowledge in pretrained LMs without adding extra learnable parameters or needing finetuning, and paves the way for hybrid models that integrate pretrained LMs with external knowledge.Comment: 8 pages; Accepted at EACL202

    Detrimental Contexts in Open-Domain Question Answering

    Full text link
    For knowledge intensive NLP tasks, it has been widely accepted that accessing more information is a contributing factor to improvements in the model's end-to-end performance. However, counter-intuitively, too much context can have a negative impact on the model when evaluated on common question answering (QA) datasets. In this paper, we analyze how passages can have a detrimental effect on retrieve-then-read architectures used in question answering. Our empirical evidence indicates that the current read architecture does not fully leverage the retrieved passages and significantly degrades its performance when using the whole passages compared to utilizing subsets of them. Our findings demonstrate that model accuracy can be improved by 10% on two popular QA datasets by filtering out detrimental passages. Additionally, these outcomes are attained by utilizing existing retrieval methods without further training or data. We further highlight the challenges associated with identifying the detrimental passages. First, even with the correct context, the model can make an incorrect prediction, posing a challenge in determining which passages are most influential. Second, evaluation typically considers lexical matching, which is not robust to variations of correct answers. Despite these limitations, our experimental results underscore the pivotal role of identifying and removing these detrimental passages for the context-efficient retrieve-then-read pipeline. Code and data are available at https://github.com/xfactlab/emnlp2023-damaging-retrievalComment: Findings of EMNLP 202
    • …
    corecore