1,140 research outputs found

    Design and Implementation of a Measurement-Based Policy-Driven Resource Management Framework For Converged Networks

    Full text link
    This paper presents the design and implementation of a measurement-based QoS and resource management framework, CNQF (Converged Networks QoS Management Framework). CNQF is designed to provide unified, scalable QoS control and resource management through the use of a policy-based network management paradigm. It achieves this via distributed functional entities that are deployed to co-ordinate the resources of the transport network through centralized policy-driven decisions supported by measurement-based control architecture. We present the CNQF architecture, implementation of the prototype and validation of various inbuilt QoS control mechanisms using real traffic flows on a Linux-based experimental test bed.Comment: in Ictact Journal On Communication Technology: Special Issue On Next Generation Wireless Networks And Applications, June 2011, Volume 2, Issue 2, Issn: 2229-6948(Online

    Building the Future Internet through FIRE

    Get PDF
    The Internet as we know it today is the result of a continuous activity for improving network communications, end user services, computational processes and also information technology infrastructures. The Internet has become a critical infrastructure for the human-being by offering complex networking services and end-user applications that all together have transformed all aspects, mainly economical, of our lives. Recently, with the advent of new paradigms and the progress in wireless technology, sensor networks and information systems and also the inexorable shift towards everything connected paradigm, first as known as the Internet of Things and lately envisioning into the Internet of Everything, a data-driven society has been created. In a data-driven society, productivity, knowledge, and experience are dependent on increasingly open, dynamic, interdependent and complex Internet services. The challenge for the Internet of the Future design is to build robust enabling technologies, implement and deploy adaptive systems, to create business opportunities considering increasing uncertainties and emergent systemic behaviors where humans and machines seamlessly cooperate

    Mobile Oriented Future Internet (MOFI)

    Get PDF
    This Special Issue consists of seven papers that discuss how to enhance mobility management and its associated performance in the mobile-oriented future Internet (MOFI) environment. The first two papers deal with the architectural design and experimentation of mobility management schemes, in which new schemes are proposed and real-world testbed experimentations are performed. The subsequent three papers focus on the use of software-defined networks (SDN) for effective service provisioning in the MOFI environment, together with real-world practices and testbed experimentations. The remaining two papers discuss the network engineering issues in newly emerging mobile networks, such as flying ad-hoc networks (FANET) and connected vehicular networks

    Augmented In-Band Telemetry to the User Equipment for beyond 5G Converged Packet-Optical Networks

    Get PDF
    Traffic monitoring through in-band telemetry is extended up to the User Equipment (UE), providing accurate e2e latency measurement. The UE becomes aware of its experienced service performance, enabling autonomous operations for faster automatic source-based Edge-Cloud steering

    Building the Future Internet through FIRE

    Get PDF
    The Internet as we know it today is the result of a continuous activity for improving network communications, end user services, computational processes and also information technology infrastructures. The Internet has become a critical infrastructure for the human-being by offering complex networking services and end-user applications that all together have transformed all aspects, mainly economical, of our lives. Recently, with the advent of new paradigms and the progress in wireless technology, sensor networks and information systems and also the inexorable shift towards everything connected paradigm, first as known as the Internet of Things and lately envisioning into the Internet of Everything, a data-driven society has been created. In a data-driven society, productivity, knowledge, and experience are dependent on increasingly open, dynamic, interdependent and complex Internet services. The challenge for the Internet of the Future design is to build robust enabling technologies, implement and deploy adaptive systems, to create business opportunities considering increasing uncertainties and emergent systemic behaviors where humans and machines seamlessly cooperate

    Smoothed Airtime Linear Tuning and Optimized REACT with Multi-hop Extensions

    Get PDF
    abstract: Medium access control (MAC) is a fundamental problem in wireless networks. In ad-hoc wireless networks especially, many of the performance and scaling issues these networks face can be attributed to their use of the core IEEE 802.11 MAC protocol: distributed coordination function (DCF). Smoothed Airtime Linear Tuning (SALT) is a new contention window tuning algorithm proposed to address some of the deficiencies of DCF in 802.11 ad-hoc networks. SALT works alongside a new user level and optimized implementation of REACT, a distributed resource allocation protocol, to ensure that each node secures the amount of airtime allocated to it by REACT. The algorithm accomplishes that by tuning the contention window size parameter that is part of the 802.11 backoff process. SALT converges more tightly on airtime allocations than a contention window tuning algorithm from previous work and this increases fairness in transmission opportunities and reduces jitter more than either 802.11 DCF or the other tuning algorithm. REACT and SALT were also extended to the multi-hop flow scenario with the introduction of a new airtime reservation algorithm. With a reservation in place multi-hop TCP throughput actually increased when running SALT and REACT as compared to 802.11 DCF, and the combination of protocols still managed to maintain its fairness and jitter advantages. All experiments were performed on a wireless testbed, not in simulation.Dissertation/ThesisMasters Thesis Computer Science 201
    corecore