27 research outputs found

    Deep Multimodal Speaker Naming

    Full text link
    Automatic speaker naming is the problem of localizing as well as identifying each speaking character in a TV/movie/live show video. This is a challenging problem mainly attributes to its multimodal nature, namely face cue alone is insufficient to achieve good performance. Previous multimodal approaches to this problem usually process the data of different modalities individually and merge them using handcrafted heuristics. Such approaches work well for simple scenes, but fail to achieve high performance for speakers with large appearance variations. In this paper, we propose a novel convolutional neural networks (CNN) based learning framework to automatically learn the fusion function of both face and audio cues. We show that without using face tracking, facial landmark localization or subtitle/transcript, our system with robust multimodal feature extraction is able to achieve state-of-the-art speaker naming performance evaluated on two diverse TV series. The dataset and implementation of our algorithm are publicly available online

    Shape and Texture Combined Face Recognition for Detection of Forged ID Documents

    Get PDF
    This paper proposes a face recognition system that can be used to effectively match a face image scanned from an identity (ID) doc-ument against the face image stored in the biometric chip of such a document. The purpose of this specific face recognition algorithm is to aid the automatic detection of forged ID documents where the photography printed on the document’s surface has been altered or replaced. The proposed algorithm uses a novel combination of texture and shape features together with sub-space representation techniques. In addition, the robustness of the proposed algorithm when dealing with more general face recognition tasks has been proven with the Good, the Bad & the Ugly (GBU) dataset, one of the most challenging datasets containing frontal faces. The proposed algorithm has been complement-ed with a novel method that adopts two operating points to enhance the reliability of the algorithm’s final verification decision.Final Accepted Versio

    Pooling Faces: Template based Face Recognition with Pooled Face Images

    Full text link
    We propose a novel approach to template based face recognition. Our dual goal is to both increase recognition accuracy and reduce the computational and storage costs of template matching. To do this, we leverage on an approach which was proven effective in many other domains, but, to our knowledge, never fully explored for face images: average pooling of face photos. We show how (and why!) the space of a template's images can be partitioned and then pooled based on image quality and head pose and the effect this has on accuracy and template size. We perform extensive tests on the IJB-A and Janus CS2 template based face identification and verification benchmarks. These show that not only does our approach outperform published state of the art despite requiring far fewer cross template comparisons, but also, surprisingly, that image pooling performs on par with deep feature pooling.Comment: Appeared in the IEEE Computer Society Workshop on Biometrics, IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), June, 201

    Quality Aware Network for Set to Set Recognition

    Full text link
    This paper targets on the problem of set to set recognition, which learns the metric between two image sets. Images in each set belong to the same identity. Since images in a set can be complementary, they hopefully lead to higher accuracy in practical applications. However, the quality of each sample cannot be guaranteed, and samples with poor quality will hurt the metric. In this paper, the quality aware network (QAN) is proposed to confront this problem, where the quality of each sample can be automatically learned although such information is not explicitly provided in the training stage. The network has two branches, where the first branch extracts appearance feature embedding for each sample and the other branch predicts quality score for each sample. Features and quality scores of all samples in a set are then aggregated to generate the final feature embedding. We show that the two branches can be trained in an end-to-end manner given only the set-level identity annotation. Analysis on gradient spread of this mechanism indicates that the quality learned by the network is beneficial to set-to-set recognition and simplifies the distribution that the network needs to fit. Experiments on both face verification and person re-identification show advantages of the proposed QAN. The source code and network structure can be downloaded at https://github.com/sciencefans/Quality-Aware-Network.Comment: Accepted at CVPR 201
    corecore