12,232 research outputs found

    Discovery and composition of web services using artificial intelligence planning and web service modeling ontology

    Get PDF
    In today’s Web environment, Web services are the preferred standards-based way to realize Service Oriented Architecture (SOA) computing. A problem that has become one of the recent critical issues is automated discovery and composition of Semantic Web services. A number of approaches have been presented to solve the problem. However, most of these approaches only consider discovery or composition of Web services but not both. In this study, an effective approach called AIMO, based on Artificial Intelligence (AI) planning, Web Service Modeling Ontology (WSMO), and Semantic Web has been proposed to tackle the problem. The main purpose of this study is to investigate and develop a novel approach for automated Web service discovery and composition. In this case, a comparative evaluation of state-of-the-art approaches for Web service composition approaches has been done and the strengths and weaknesses of those approaches have been discussed. Moreover a translator for interaction between WSMO and AI-planning based on Description Logics has been proposed. In addition, some parts of AIMO architecture have been tested on a practical case study, and the results based on the experimental validation demonstrate that AIMO provides an effective and applicable solution. AIMO continues to support loose coupling paradigm of SOA by separating the discovery from the composition of Web services

    IRS II: a framework and infrastructure for semantic web services

    Get PDF
    In this paper we describe IRS–II (Internet Reasoning Service) a framework and implemented infrastructure, whose main goal is to support the publication, location, composition and execution of heterogeneous web services, augmented with semantic descriptions of their functionalities. IRS–II has three main classes of features which distinguish it from other work on semantic web services. Firstly, it supports one-click publishing of standalone software: IRS–II automatically creates the appropriate wrappers, given pointers to the standalone code. Secondly, it explicitly distinguishes between tasks (what to do) and methods (how to achieve tasks) and as a result supports capability-driven service invocation; flexible mappings between services and problem specifications; and dynamic, knowledge-based service selection. Finally, IRS–II services are web service compatible – standard web services can be trivially published through the IRS–II and any IRS–II service automatically appears as a standard web service to other web service infrastructures. In the paper we illustrate the main functionalities of IRS–II through a scenario involving a distributed application in the healthcare domain

    Detecting Ontological Conflicts in Protocols between Semantic Web Services

    Full text link
    The task of verifying the compatibility between interacting web services has traditionally been limited to checking the compatibility of the interaction protocol in terms of message sequences and the type of data being exchanged. Since web services are developed largely in an uncoordinated way, different services often use independently developed ontologies for the same domain instead of adhering to a single ontology as standard. In this work we investigate the approaches that can be taken by the server to verify the possibility to reach a state with semantically inconsistent results during the execution of a protocol with a client, if the client ontology is published. Often database is used to store the actual data along with the ontologies instead of storing the actual data as a part of the ontology description. It is important to observe that at the current state of the database the semantic conflict state may not be reached even if the verification done by the server indicates the possibility of reaching a conflict state. A relational algebra based decision procedure is also developed to incorporate the current state of the client and the server databases in the overall verification procedure

    A study of existing Ontologies in the IoT-domain

    Get PDF
    Several domains have adopted the increasing use of IoT-based devices to collect sensor data for generating abstractions and perceptions of the real world. This sensor data is multi-modal and heterogeneous in nature. This heterogeneity induces interoperability issues while developing cross-domain applications, thereby restricting the possibility of reusing sensor data to develop new applications. As a solution to this, semantic approaches have been proposed in the literature to tackle problems related to interoperability of sensor data. Several ontologies have been proposed to handle different aspects of IoT-based sensor data collection, ranging from discovering the IoT sensors for data collection to applying reasoning on the collected sensor data for drawing inferences. In this paper, we survey these existing semantic ontologies to provide an overview of the recent developments in this field. We highlight the fundamental ontological concepts (e.g., sensor-capabilities and context-awareness) required for an IoT-based application, and survey the existing ontologies which include these concepts. Based on our study, we also identify the shortcomings of currently available ontologies, which serves as a stepping stone to state the need for a common unified ontology for the IoT domain.Comment: Submitted to Elsevier JWS SI on Web semantics for the Internet/Web of Thing

    Systems And Methods For Web Service Architectures

    Get PDF
    Web service registry systems and methods, and web service architectures are disclosed. A web service registry system can include a web service registry, a plurality of web services, a plurality of knowledgebase models, and a control system. The plurality of web services can be published to the web service registry for effective dynamic discovery and invocation of the web services. The plurality of knowledgebase models, which can be defined by domain knowledge experts, can be associated with the web service registry. Each of the knowledgebase models can include a semantic specification and a syntactic specification. The control system can periodically filter non-compliant web services from the web service registry, where a non-compliant web service fails to comply with a predetermined knowledgebase model associated with the web service registry. Other embodiments of the web service management systems, architectures, and methods are also disclosed.Georgia Tech Research Corporatio
    • …
    corecore