vii

TABLE OF CONTENTS

СНАРТЕ	CR	TITLE	PAGI
	DEC	CLARATION	ii
	DEI	DICATION	iii
	ACI	KNOWLEDGEMENTS	iv
	ABS	STRACT	v
	ABS	STRAK	vi
	TAE	BLE OF CONTENTS	vii
	LIS	T OF TABLES	xii
	LIS	T OF FIGURES	xiii
	LIS	T OF ABBREVIATIONS	xvi
	LIS	T OF APPENDICES	xvii
1	INT	RODUCTION	1
	1.1	Background of the Problem	1
	1.2	Statement of the Problem	2
	1.3	Objectives of the Study	5
	1.4	Scope of the Study	6
	1.5	Significance of the Study	7
2	LIT	ERATURE REVIEW	9
	2.1	Definition of Web Service	9
	2.2	Definition of Semantic Web	12

	2.3	Definition of Semantic Web Services	13
	2.4	Definition of Web Service Discovery and Composition	16
	2.5	General Framework for Web Service Composition	17
	2.6	Web Service Composition as Planning	20
	2.7	HTN Planning for Web Service Composition	23
	2.8	Prominent Approaches in Web Service Composition	24
		2.8.1 EFlow	24
		2.8.2 Polymorphic Process Model (PPM)	25
		2.8.3 Situation Calculus	25
		2.8.4 HTN-DL	26
		2.8.5 BPEL4WS	30
		2.8.6 OWL-S	31
		2.8.7 WSMO	33
		2.8.8 Other Web Service Composition Approaches	37
	2.9	The Differences between OWL-S and WSMO	38
	2.10	The Similarities between OWL-S and WSMO	39
	2.11	Description Logics (DLs) and Reasoning	39
	2.12	Summary	42
3	COM	MPARATIVE EVALUATION OF STATE-OF-THE-AF	RT
			43
	3.1	Classification of Approaches in Web Service Composition	43
		3.1.1 AI-Planning-Based Approaches	43
		3.1.2 Workflow-Based Approaches	44
		3.1.3 Syntactic-Based Approaches	45
		3.1.4 Semantic-Based Approaches	46
	3.2	Comparative Evaluation	46
		3.2.1 Security	47

		3.2.2 Quality of Service (QoS)	48
		3.2.3 Automatic Composition	50
		3.2.4 Composition Scalability	51
		3.2.5 Correctness Verifiability	52
		3.2.6 Discovery	52
	3.3	Discussion	53
4	RES	SEARCH METHODOLOGY	55
	4.1	Research Design	55
	4.2	Research Procedure and Activities	58
		4.2.1 Literature Review	58
		4.2.2 Analysis of Requirements	59
		4.2.3 Development	59
		4.2.4 Evaluation	60
	4.3	Operational Framework	63
	4.4	Instrumentation	64
	4.5	Assumptions and Limitations	64
5	FOF	RMALIZING WEB SERVICE DISCOVERY AN	ND WEB
	SER	RVICE COMPOSITION PROBLEMS	66
	5.1	Description Logics	66
	5.2	Definition of Semantic Web Services	68
	5.3	Definition of Web Service Discovery Problem	70
	5.4	Definition of Web Service Composition Problem	74
	5.5	Summary	78
6	AIM	IO ARCHITECTURE TO SUPPORT WEB S	SERVICE
	DIS	COVERY AND COMPOSITION	79
	6.1	Motivating Scenario	79

	6.2	HTN-Planning and HTN-DL Limitations		81
	6.3	Securit	ty Capability and Constraint Types	83
		6.3.1	Security-related Goal Constraints	84
		6.3.2	Security-related Choreography Constraints	85
		6.3.3	Security-related Orchestration Constraint	86
	6.4	AIMO		87
		6.4.1	Overview	87
		6.4.2	AIMO Architecture	91
		6.4.3	Planning Process for AIMO	97
	6.5	Transla	ating Web Service Descriptions to AIMO	102
		6.5.1	Relation between WSMO and AIMO	104
		6.5.2	Translation of WSMO to EHTN-DL	106
	6.6	Summ	ary	123
7	IMP	LEME	NTATION AND EVALUATION	125
7	IMP 7.1		NTATION AND EVALUATION ototype Implementation	125 125
7				
7		The Pr	ototype Implementation	125
7		The Pr 7.1.1	ototype Implementation Introduction	125 125
7		The Pr 7.1.1 7.1.2	Introduction Infrastructure	125 125 126
7		The Pr 7.1.1 7.1.2 7.1.3	Introduction Infrastructure Discovery Phase	125125126129
7		The Pr 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5	Introduction Infrastructure Discovery Phase Composition and Invocation Phases	125 125 126 129 131
7	7.1	The Pr 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5	Introduction Infrastructure Discovery Phase Composition and Invocation Phases Graphical User Interface (GUI)	125 125 126 129 131 134
7	7.1	The Pr 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 Experi	Introduction Infrastructure Discovery Phase Composition and Invocation Phases Graphical User Interface (GUI) mental Validation	125 125 126 129 131 134
7	7.1	The Pr 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 Experi 7.2.1	Introduction Infrastructure Discovery Phase Composition and Invocation Phases Graphical User Interface (GUI) mental Validation Determining Replication Number or Sample Size	125 125 126 129 131 134 137
7	7.1	The Property 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 Experiments 7.2.1 7.2.2	Introduction Infrastructure Discovery Phase Composition and Invocation Phases Graphical User Interface (GUI) mental Validation Determining Replication Number or Sample Size ANOVA Test	125 125 126 129 131 134 137 138 139

APPENI	DIX A		169-170
REFERI	ENCES	8	158
	8.3	Open Issues and Future Work	156
	8.2	Contributions of the Research	155
	8.1	Summary of the Research	153
8	CO	NCLUSIONS AND FUTURE RESEARCH	153
	7.4	Summary	152
	7.3	Discussion	151
		7.2.6 Comparison of AIMO with Other Approaches	149

LIST OF TABLES

TABLE N	TITLE	
3.1	Comparison of state-of-the-art Web service composition approach	es 53
4.1	Operational framework	63
5.1	An example for Web service discovery problem	74
5.2	An example for composition problem based on Sequential services	s 76
5.3	An example for composition problem based on Parallel services	77
6.1	A matching task and a composite Web service	90
6.2	Security capabilities and constraints of Web services	97
6.3	AIMO translator to translate WSMO transition rules into HTN-DI	110
7.1	Correlation	143
7.2	Comparative evaluation of AIMO with other approaches	150

LIST OF FIGURES

FIGURE N	NO. TITLE	PAGE
2.1	How Web services work	11
2.2	The nature of Semantic Web services	13
2.3	Annotation of a Semantic Web service identified with WSDL	14
2.4	The general framework of service composition system	17
2.5	HTN-DL algorithm	28
2.6	HTN-DL algorithm for translating If-Then-Else control construct	29
2.7	HTN-DL algorithm for translating Repeat-While control construc	et 29
2.8	The conceptual model of OWL-S	31
2.9	Four top-level elements of WSMO	33
2.10	WSMO Web service – general description	35
2.11	Architecture of Knowledge representation systems	40
3.1	Classification of Web service composition approaches	44
4.1	Research procedure	61
4.2	Research flow chart	62
5.1	Matchmaking notions for semantically enabled discovery	72
5.2	Web service discovery algorithm	73
5.3	Example of composition using Sequential Web services	76
5.4	Example of composition using Parallel Web services	78
6.1	The user's goal	81

6.2	Capability Level of the flight booking service	81
6.3	An example of security ontology in WSMO	84
6.4	Security-related Goal constraints	85
6.5	Security-related choreography and orchestration constraints	86
6.6	Architecture of the AIMO in an abstract level	93
6.7	Example of matching between two goals and a Web service	95
6.8	The EHTN-DL algorithm for the planning process	99
6.9	High-level of the OWL-S process ontology	103
6.10	From Service to Transition Rules in WSMO	105
6.11	An example of State Signature for a composite service	108
6.12	An algorithm for translating transition rules of WSMO	112
6.13	An example of WSMO If-Then transition rule with else statement	115
6.14	An example of WSMO forAll-With-Do transition rule	119
6.15	An HTN-DL based algorithm for translating Choose-With-Do	121
6.16	An example of WSMO Choose-With-Do transition rule	122
7.1	An illustration of the implemented prototype using UML diagram	127
7.2	The run-time mediator and the ontology mapping tools	130
7.3	The specified goal for the example as a given task	133
7.4	The matched method to the specified task	133
7.5	Four operators to perform the matched method to the given task	134
7.6	Discovery process for the motivating scenario using WSMT tool	135
7.7	A screen shot from AIMO-Composer tool	136
7.8	Boxplot of Web service composition time	139
7.9	A Predicator assumption checking (A)	143
7.10	A predicator assumption checking (B)	144
7.11	Linear model (1,Y)	144

7.12	Quadratic model for (1,Y)	145
7.13	Linear model for (X,50)	146
7.14	The planning process for the motivating scenario	147
7.15	Composition execution time for the motivating scenario	147
7.16	Scalability of the AIMO-Composer for the motivating scenario	148

LIST OF ABBREVIATIONS

AI - Artificial Intelligence

AIMO - AI planning— web service Modeling Ontology

ASM - Abstract State Machine

BPEL4WS - Business Process Execution Language for Web Services

DL - Description Logic

EHTN-DL - Enhanced Hierarchical Task Network- Description Logic

HTN - Hierarchical Task Network

HTN-DL - Hierarchical Task Network- Description Logic

Iff - if and only if

OBS - Online Banking System

OCRS - Online Conference Registration System

OWL - Web Ontology Language

OWL-S - Web Ontology Language for Web Services

PPM - Polymorphic Process Model
 SOA - Service Oriented Architecture
 SOAP - Simple Object Access Protocol
 SWS-TC - Semantic Web Service Test Case

UDDI - Universal Description, Discovery, and Integration

WS - Web Service

WSC - Web Service CompositionWSD - Web Service Discovery

WSDL - Web Services Description Language
 WSML - Web Service Modeling Language
 WSMO - Web Service Modeling Ontology

WSMX - Web Service Modeling eXecution environment

LIST OF APPENDICES

APPE	NDIX	TITLE	PAGE
٨	List of mublications		160
A	List of publications		169