4,097 research outputs found

    Improving sustainability through intelligent cargo and adaptive decision making

    Get PDF
    In the current society, logistics is faced with the challenge to meet more stringent sustainability goals. Shippers and transport service providers both aim to reduce the carbon footprint of their logistic operations. To do so, optimal use of logistics resources and physical infrastructure should be aimed for. An adaptive decision making process for the selection of a specific transport modality, transport provider and timeslot (aimed at minimisation of the carbon footprint) enables shippers to achieve this. This requires shippers to have access to up-to-date capacity information from transport providers (e.g. current and scheduled loading status of the various transport means and information on carbon footprint) and traffic information (e.g. city logistics and current traffic information). A prerequisite is an adequate infrastructure for collaboration and open exchange of information between the various stakeholders in the logistics value chain to obtain the up-to-date information. This paper gives a view on how such an advanced information infrastructure can be realised, currently being developed within the EU iCargo project. The paper describes a reference logistics value chain, including business benefits for each of the roles in the logistics value chain of aiming for sustainability. A case analysis is presented that reflects a practical situation in which the various roles collaborate and exchange information for realizing sustainability goals, using adaptive decision making for selecting a transport modality, transport provider, and timeslot. A high-level overview is provided of the requirements on and technical implementation of the supporting advanced infrastructure for collaboration and open information exchange.In the current society, logistics is faced with the challenge to meet more stringent sustainability goals. Shippers and transport service providers both aim to reduce the carbon footprint of their logistic operations. To do so, optimal use of logistics resources and physical infrastructure should be aimed for. An adaptive decision making process for the selection of a specific transport modality, transport provider and timeslot (aimed at minimisation of the carbon footprint) enables shippers to achieve this. This requires shippers to have access to up-to-date capacity information from transport providers (e.g. current and scheduled loading status of the various transport means and information on carbon footprint) and traffic information (e.g. city logistics and current traffic information). A prerequisite is an adequate infrastructure for collaboration and open exchange of information between the various stakeholders in the logistics value chain to obtain the up-to-date information. This paper gives a view on how such an advanced information infrastructure can be realised, currently being developed within the EU iCargo project. The paper describes a reference logistics value chain, including business benefits for each of the roles in the logistics value chain of aiming for sustainability. A case analysis is presented that reflects a practical situation in which the various roles collaborate and exchange information for realizing sustainability goals, using adaptive decision making for selecting a transport modality, transport provider, and timeslot. A high-level overview is provided of the requirements on and technical implementation of the supporting advanced infrastructure for collaboration and open information exchange.In the current society, logistics is faced with the challenge to meet more stringent sustainability goals. Shippers and transport service providers both aim to reduce the carbon footprint of their logistic operations. To do so, optimal use of logistics resources and physical infrastructure should be aimed for. An adaptive decision making process for the selection of a specific transport modality, transport provider and timeslot (aimed at minimisation of the carbon footprint) enables shippers to achieve this. This requires shippers to have access to up-to-date capacity information from transport providers (e.g. current and scheduled loading status of the various transport means and information on carbon footprint) and traffic information (e.g. city logistics and current traffic information). A prerequisite is an adequate infrastructure for collaboration and open exchange of information between the various stakeholders in the logistics value chain to obtain the up-to-date information. This paper gives a view on how such an advanced information infrastructure can be realised, currently being developed within the EU iCargo project. The paper describes a reference logistics value chain, including business benefits for each of the roles in the logistics value chain of aiming for sustainability. A case analysis is presented that reflects a practical situation in which the various roles collaborate and exchange information for realizing sustainability goals, using adaptive decision making for selecting a transport modality, transport provider, and timeslot. A high-level overview is provided of the requirements on and technical implementation of the supporting advanced infrastructure for collaboration and open information exchange

    Ontology-Based Architecture to Improve Driving Performance Using Sensor Information for Intelligent Transportation Systems

    Get PDF
    Intelligent transportation systems are advanced applications with aim to provide innovative services relating to road transport management and enable the users to be better informed and make safer and coordinated use of transport networks. A crucial element for the success of these systems is that vehicles can exchange information not only among themselves but with other elements in the road infrastructure through different applications. One of the most important information sources in this kind of systems is sensors. Sensors can be located into vehicles or as part of an infrastructure element, such as bridges or traffic signs. The sensor can provide information related to the weather conditions and the traffic situation, which is useful to improve the driving process. In this paper a multiagent system using ontologies to improve the driving environment is proposed. The system performs different tasks in automatic way to increase the driver safety and comfort using sensor information

    Recent advances in industrial wireless sensor networks towards efficient management in IoT

    Get PDF
    With the accelerated development of Internet-of- Things (IoT), wireless sensor networks (WSN) are gaining importance in the continued advancement of information and communication technologies, and have been connected and integrated with Internet in vast industrial applications. However, given the fact that most wireless sensor devices are resource constrained and operate on batteries, the communication overhead and power consumption are therefore important issues for wireless sensor networks design. In order to efficiently manage these wireless sensor devices in a unified manner, the industrial authorities should be able to provide a network infrastructure supporting various WSN applications and services that facilitate the management of sensor-equipped real-world entities. This paper presents an overview of industrial ecosystem, technical architecture, industrial device management standards and our latest research activity in developing a WSN management system. The key approach to enable efficient and reliable management of WSN within such an infrastructure is a cross layer design of lightweight and cloud-based RESTful web service

    A unified ontology-based data integration approach for the internet of things

    Get PDF
    Data integration enables combining data from various data sources in a standard format. Internet of things (IoT) applications use ontology approaches to provide a machine-understandable conceptualization of a domain. We propose a unified ontology schema approach to solve all IoT integration problems at once. The data unification layer maps data from different formats to data patterns based on the unified ontology model. This paper proposes a middleware consisting of an ontology-based approach that collects data from different devices. IoT middleware requires an additional semantic layer for cloud-based IoT platforms to build a schema for data generated from diverse sources. We tested the proposed model on real data consisting of approximately 160,000 readings from various sources in different formats like CSV, JSON, raw data, and XML. The data were collected through the file transfer protocol (FTP) and generated 960,000 resource description framework (RDF) triples. We evaluated the proposed approach by running different queries on different machines on SPARQL protocol and RDF query language (SPARQL) endpoints to check query processing time, validation of integration, and performance of the unified ontology model. The average response time for query execution on generated RDF triples on the three servers were approximately 0.144 seconds, 0.070 seconds, 0.062 seconds, respectively
    • …
    corecore