2,156 research outputs found

    Semantics for incident identification and resolution reports

    Get PDF
    In order to achieve a safe and systematic treatment of security protocols, organizations release a number of technical briefings describing how to detect and manage security incidents. A critical issue is that this document set may suffer from semantic deficiencies, mainly due to ambiguity or different granularity levels of description and analysis. An approach to face this problem is the use of semantic methodologies in order to provide better Knowledge Externalization from incident protocols management. In this article, we propose a method based on semantic techniques for both, analyzing and specifying (meta)security requirements on protocols used for solving security incidents. This would allow specialist getting better documentation on their intangible knowledge about them.Ministerio de Economía y Competitividad TIN2013-41086-

    RECLAMO: virtual and collaborative honeynets based on trust management and autonomous systems applied to intrusion management

    Get PDF
    Security intrusions in large systems is a problem due to its lack of scalability with the current IDS-based approaches. This paper describes the RECLAMO project, where an architecture for an Automated Intrusion Response System (AIRS) is being proposed. This system will infer the most appropriate response for a given attack, taking into account the attack type, context information, and the trust and reputation of the reporting IDSs. RECLAMO is proposing a novel approach: diverting the attack to a specific honeynet that has been dynamically built based on the attack information. Among all components forming the RECLAMO's architecture, this paper is mainly focused on defining a trust and reputation management model, essential to recognize if IDSs are exposing an honest behavior in order to accept their alerts as true. Experimental results confirm that our model helps to encourage or discourage the launch of the automatic reaction process

    A semantic approach to reachability matrix computation

    Get PDF
    The Cyber Security is a crucial aspect of networks management. The Reachability Matrix computation is one of the main challenge in this field. This paper presents an intelligent solution in order to address the Reachability Matrix computational proble

    Artificial Intelligence and Big Data Analytics in Support of Cyber Defense

    Get PDF
    Cybersecurity analysts rely on vast volumes of security event data to predict, identify, characterize, and deal with security threats. These analysts must understand and make sense of these huge datasets in order to discover patterns which lead to intelligent decision making and advance warnings of possible threats, and this ability requires automation. Big data analytics and artificial intelligence can improve cyber defense. Big data analytics methods are applied to large data sets that contain different data types. The purpose is to detect patterns, correlations, trends, and other useful information. Artificial intelligence provides algorithms that can reason or learn and improve their behavior, and includes semantic technologies. A large number of automated systems are currently based on syntactic rules which are generally not sophisticated enough to deal with the level of complexity in this domain. An overview of artificial intelligence and big data technologies in cyber defense is provided, and important areas for future research are identified and discussed

    Ensuring Cyber-Security in Smart Railway Surveillance with SHIELD

    Get PDF
    Modern railways feature increasingly complex embedded computing systems for surveillance, that are moving towards fully wireless smart-sensors. Those systems are aimed at monitoring system status from a physical-security viewpoint, in order to detect intrusions and other environmental anomalies. However, the same systems used for physical-security surveillance are vulnerable to cyber-security threats, since they feature distributed hardware and software architectures often interconnected by ‘open networks’, like wireless channels and the Internet. In this paper, we show how the integrated approach to Security, Privacy and Dependability (SPD) in embedded systems provided by the SHIELD framework (developed within the EU funded pSHIELD and nSHIELD research projects) can be applied to railway surveillance systems in order to measure and improve their SPD level. SHIELD implements a layered architecture (node, network, middleware and overlay) and orchestrates SPD mechanisms based on ontology models, appropriate metrics and composability. The results of prototypical application to a real-world demonstrator show the effectiveness of SHIELD and justify its practical applicability in industrial settings

    Ontology in Information Security

    Get PDF
    The past several years we have witnessed that information has become the most precious asset, while protection and security of information is becoming an ever greater challenge due to the large amount of knowledge necessary for organizations to successfully withstand external threats and attacks. This knowledge collected from the domain of information security can be formally described by security ontologies. A large number of researchers during the last decade have dealt with this issue, and in this paper we have tried to identify, analyze and systematize the relevant papers published in scientific journals indexed in selected scientific databases, in period from 2004 to 2014. This paper gives a review of literature in the field of information security ontology and identifies a total of 52 papers systematized in three groups: general security ontologies (12 papers), specific security ontologies (32 papers) and theoretical works (8 papers). The papers were of different quality and level of detail and varied from presentations of simple conceptual ideas to sophisticated frameworks based on ontology

    Cybersecurity knowledge graphs

    Get PDF
    Cybersecurity knowledge graphs, which represent cyber-knowledge with a graph-based data model, provide holistic approaches for processing massive volumes of complex cybersecurity data derived from diverse sources. They can assist security analysts to obtain cyberthreat intelligence, achieve a high level of cyber-situational awareness, discover new cyber-knowledge, visualize networks, data flow, and attack paths, and understand data correlations by aggregating and fusing data. This paper reviews the most prominent graph-based data models used in this domain, along with knowledge organization systems that define concepts and properties utilized in formal cyber-knowledge representation for both background knowledge and specific expert knowledge about an actual system or attack. It is also discussed how cybersecurity knowledge graphs enable machine learning and facilitate automated reasoning over cyber-knowledge

    Cyber Threat Intelligence Model: An Evaluation of Taxonomies, Sharing Standards, and Ontologies within Cyber Threat Intelligence

    Full text link
    Cyber threat intelligence is the provision of evidence-based knowledge about existing or emerging threats. Benefits of threat intelligence include increased situational awareness and efficiency in security operations and improved prevention, detection, and response capabilities. To process, analyze, and correlate vast amounts of threat information and derive highly contextual intelligence that can be shared and consumed in meaningful times requires utilizing machine-understandable knowledge representation formats that embed the industry-required expressivity and are unambiguous. To a large extend, this is achieved by technologies like ontologies, interoperability schemas, and taxonomies. This research evaluates existing cyber-threat-intelligence-relevant ontologies, sharing standards, and taxonomies for the purpose of measuring their high-level conceptual expressivity with regards to the who, what, why, where, when, and how elements of an adversarial attack in addition to courses of action and technical indicators. The results confirmed that little emphasis has been given to developing a comprehensive cyber threat intelligence ontology with existing efforts not being thoroughly designed, non-interoperable and ambiguous, and lacking semantic reasoning capability

    Digital Twins and the Future of their Use Enabling Shift Left and Shift Right Cybersecurity Operations

    Full text link
    Digital Twins (DTs), optimize operations and monitor performance in Smart Critical Systems (SCS) domains like smart grids and manufacturing. DT-based cybersecurity solutions are in their infancy, lacking a unified strategy to overcome challenges spanning next three to five decades. These challenges include reliable data accessibility from Cyber-Physical Systems (CPS), operating in unpredictable environments. Reliable data sources are pivotal for intelligent cybersecurity operations aided with underlying modeling capabilities across the SCS lifecycle, necessitating a DT. To address these challenges, we propose Security Digital Twins (SDTs) collecting realtime data from CPS, requiring the Shift Left and Shift Right (SLSR) design paradigm for SDT to implement both design time and runtime cybersecurity operations. Incorporating virtual CPS components (VC) in Cloud/Edge, data fusion to SDT models is enabled with high reliability, providing threat insights and enhancing cyber resilience. VC-enabled SDT ensures accurate data feeds for security monitoring for both design and runtime. This design paradigm shift propagates innovative SDT modeling and analytics for securing future critical systems. This vision paper outlines intelligent SDT design through innovative techniques, exploring hybrid intelligence with data-driven and rule-based semantic SDT models. Various operational use cases are discussed for securing smart critical systems through underlying modeling and analytics capabilities.Comment: IEEE Submitted Paper: Trust, Privacy and Security in Intelligent Systems, and Application
    corecore