126,278 research outputs found

    Temporal tracking of mineralization and transcriptional developments of shell formation during the early life history of pearl oyster Pinctada maxima

    Get PDF
    Molluscan larval ontogeny is a highly conserved process comprising three principal developmental stages. A characteristic unique to each of these stages is shell design, termed prodissoconch I, prodissoconch II and dissoconch. These shells vary in morphology, mineralogy and microstructure. The discrete temporal transitions in shell biomineralization between these larval stages are utilized in this study to investigate transcriptional involvement in several distinct biomineralization events. Scanning electron microscopy and X-ray diffraction analysis of P. maxima larvae and juveniles collected throughout post-embryonic ontogenesis, document the mineralogy and microstructure of each shelled stage as well as establishing a timeline for transitions in biomineralization. P. maxima larval samples most representative of these biomineralization distinctions and transitions were analyzed for differential gene expression on the microarray platform PmaxArray 1.0. A number of transcripts are reported as differentially expressed in correlation to the mineralization events of P. maxima larval ontogeny. Some of those isolated are known shell matrix genes while others are novel; these are discussed in relation to potential shell formation roles. This interdisciplinary investigation has linked the shell developments of P. maxima larval ontogeny with corresponding gene expression profiles, furthering the elucidation of shell biomineralization

    The development of the Silurian trilobite Aulacopleura koninckii reconstructed by applying inferred growth and segmentation dynamics: A case study in paleo-evo-devo

    Get PDF
    Fossilized growth series provide rare glimpses into the development of ancient organisms, illustrating descriptively how size and shape changed through ontogeny. Occasionally fossil preservation is such that it is feasible to test alternative possibilities about how ancient development was regulated. Here we apply inferred developmental parameters pertaining to size, shape, and segmentation in the abundant and well-preserved 429 Myr old trilobite Aulacopleura koninckii that we have investigated previously to reconstruct the post-embryonic ontogeny of this ancient arthropod. Our published morphometric analyses associated with model testing have shown that: specification of the adult number of trunk segments (polymorphic in this species) was determined precociously in ontogeny; that growth regulation was targeted (i.e., compensatory), such that each developmental stage exhibited comparable variance in size and shape; and that growth gradients operating along the main body axis, both during juvenile and adult ontogeny, resulted from a form of growth control based on positional specification. While such developmental features are common among extant organisms, our results represent the oldest evidence for them within Metazoa. Herein, the novel reconstruction of the development of Aulacopleura koninckii permits visualization of patterns of relative and absolute growth and segmentation as never before possible for a fossilized arthropod ontogeny. By conducting morphometric analysis of appropriate data sets it is thus possible to move beyond descriptive ontogenetic studies and to address questions of high interest for evolutionary developmental biology using data from fossils, which can help elucidate both how developmental processes themselves evolve and how they affect the evolution of organismal body patterning. By extending similar analyses to other cases of exceptional preservation of fossilized ontogeny, we can anticipate beginning to realize the research program of “paleo-evo-devo.

    Swimming abilities of temperate pelagic fish larvae prove that they may control their dispersion in coastal areas

    Get PDF
    The Sense Acuity and Behavioral (SAAB) Hypothesis proposes that the swimming capabilities and sensorial acuity of temperate fish larvae allows them to find and swim towards coastal nursery areas, which are crucial for their recruitment. To gather further evidence to support this theory, it is necessary to understand how horizontal swimming capability varies along fish larvae ontogeny. Therefore, we studied the swimming capability of white seabream Diplodus sargus (Linnaeus, 1758) larvae along ontogeny, and their relationship with physiological condition. Thus, critical swimming speed (U-crit) and the distance swam (km) during endurance tests were determined for fish larvae from 15 to 55 days post-hatching (DPH), and their physiological condition (RNA, DNA and protein contents) was assessed. The critical swimming speed of white seabream larvae increased along ontogeny from 1.1 cm s(-1) (15 DPH) to 23 cm s(-1) (50 and 55 DPH), and the distance swam by larvae in the endurance experiments increased from 0.01 km (15 DPH) to 86.5 km (45 DPH). This finding supports one of the premises of the SAAB hypothesis, which proposes that fish larvae can influence their transport and distribution in coastal areas due to their swimming capabilities. The relationship between larvae's physiological condition and swimming capabilities were not evident in this study. Overall, this study provides critical information for understanding the link between population dynamics and connectivity with the management and conservation of fish stocks.Funding Agency Portuguese Foundation for Science and Technology SFRH/BD/104209/2014 Portuguese Foundation for Science and Technology UID/Multi/04326/2019 FCT, under the Transitional Norm DL57/2016/CP[1361]/CT[CT0008 CLIMFISH project-A framework for assess vulnerability of coastal fisheries to climate change in Portuguese coast n2/SAICT/2017-SAICTinfo:eu-repo/semantics/publishedVersio

    Phenotypically Plastic Responses to Predation Risk Are Temperature Dependent

    Get PDF
    Predicting how organisms respond to climate change requires that we understand the temperature dependence of fitness in relevant ecological contexts (e.g., with or without predation risk). Predation risk often induces changes to life history traits that are themselves temperature dependent. We explore how perceived predation risk and temperature interact to determine fitness (indicated by the intrinsic rate of increase, r) through changes to its underlying components (net reproductive rate, generation time, and survival) in Daphnia magna. We exposed Daphnia to predation cues from dragonfly naiads early, late, or throughout their ontogeny. Predation risk increased r differentially across temperatures and depending on the timing of exposure to predation cues. The timing of predation risk likewise altered the temperature-dependent response of T and R0. Daphnia at hotter temperatures responded to predation risk by increasing r through a combination of increased R0 and decreased T that together countered an increase in mortality rate. However, only D. magna that experienced predation cues early in ontogeny showed elevated r at colder temperatures. These results highlight the fact that phenotypically plastic responses of life history traits to predation risk can be strongly temperature dependent

    The Evolutionary Reorganization of Ontogeny and Origin of Multicellularity

    Get PDF
    The formation of morphogenetic mechanisms during emergence of multicellularity is discussed in this article

    Ontogeny and Systematics of the Genus \u3ci\u3eCerophagus\u3c/i\u3e (Acari: Gaudiellidae), Mites Associated With Bumblebees

    Get PDF
    Nymphs and adults of Cerophagus nearcticus n. sp. are described from the nest of Bombus terricola occidentalis in California and phoretic associations with B. impatiens in Michigan and New York. On the basis of adult morphology, the genus Cerophagopsis is removed from synonymy with Cerophagus and retained in the family Acaridae, while Cerophagus is transferred to the family Gaudiellidae. The genus Rhypoglyphus is considered a junior subjec­tive synonym of Cerophagopsis. The genera of Gaudiellidae are noted and the genus Trigonacoptes is considered a junior subjective synonym of Gaudiella

    Tracing the Biological Roots of Knowledge

    Get PDF
    The essay is a critical review of three possible approaches in the theory of knowledge while tracing the biological roots of knowledge: empiricist, rationalist and developmentalist approaches. Piaget's genetic epistemology, a developmentalist approach, is one of the first comprehensive treatments on the question of tracing biological roots of knowledge. This developmental approach is currently opposed, without questioning the biological roots of knowledge, by the more popular rationalist approach, championed by Chomsky. Developmental approaches are generally coherent with cybernetic models, of which the theory of autopoiesis proposed by Maturana and Varela made a significant theoretical move in proposing an intimate connection between metabolism and knowledge. Modular architecture is currently considered more or less an undisputable model for both biology as well as cognitive science. By suggesting that modulation of modules is possible by motor coordination, a proposal is made to account for higher forms of conscious cognition within the four distinguishable layers of the human mind. Towards the end, the problem of life and cognition is discussed in the context of the evolution of complex cognitive systems, suggesting the unique access of phylogeny during the ontogeny of human beings as a very special case, and how the problem cannot be dealt with independent of the evolution of coding systems in nature

    Ontogenetic scaling patterns and functional anatomy of the pelvic limb musculature in emus (Dromaius novaehollandiae)

    Get PDF
    Emus (Dromaius novaehollandiae) are exclusively terrestrial, bipedal and cursorial ratites with some similar biomechanical characteristics to humans. Their growth rates are impressive, as their body mass increases eighty-fold from hatching to adulthood whilst maintaining the same mode of locomotion throughout life. These ontogenetic characteristics stimulate biomechanical questions about the strategies that allow emus to cope with their rapid growth and locomotion, which can be partly addressed via scaling (allometric) analysis of morphology. In this study we have collected pelvic limb anatomical data (muscle architecture, tendon length, tendon mass and bone lengths) and calculated muscle physiological cross sectional area (PCSA) and average tendon cross sectional area from emus across three ontogenetic stages (n = 17, body masses from 3.6 to 42 kg). The data were analysed by reduced major axis regression to determine how these biomechanically relevant aspects of morphology scaled with body mass. Muscle mass and PCSA showed a marked trend towards positive allometry (26 and 27 out of 34 muscles respectively) and fascicle length showed a more mixed scaling pattern. The long tendons of the main digital flexors scaled with positive allometry for all characteristics whilst other tendons demonstrated a less clear scaling pattern. Finally, the two longer bones of the limb (tibiotarsus and tarsometatarsus) also exhibited positive allometry for length, and two others (femur and first phalanx of digit III) had trends towards isometry. These results indicate that emus experience a relative increase in their muscle force-generating capacities, as well as potentially increasing the force-sustaining capacities of their tendons, as they grow. Furthermore, we have clarified anatomical descriptions and provided illustrations of the pelvic limb muscle–tendon units in emus
    corecore