162 research outputs found

    Predicting Network Attacks Using Ontology-Driven Inference

    Full text link
    Graph knowledge models and ontologies are very powerful modeling and re asoning tools. We propose an effective approach to model network attacks and attack prediction which plays important roles in security management. The goals of this study are: First we model network attacks, their prerequisites and consequences using knowledge representation methods in order to provide description logic reasoning and inference over attack domain concepts. And secondly, we propose an ontology-based system which predicts potential attacks using inference and observing information which provided by sensory inputs. We generate our ontology and evaluate corresponding methods using CAPEC, CWE, and CVE hierarchical datasets. Results from experiments show significant capability improvements comparing to traditional hierarchical and relational models. Proposed method also reduces false alarms and improves intrusion detection effectiveness.Comment: 9 page

    Using Semantic Technologies in Digital Libraries- A Roadmap to Quality Evaluation

    Get PDF
    Abstract. In digital libraries semantic techniques are often deployed to reduce the expensive manual overhead for indexing documents, maintaining metadata, or caching for future search. However, using such techniques may cause a decrease in a collection’s quality due to their statistical nature. Since data quality is a major concern in digital libraries, it is important to be able to measure the (loss of) quality of metadata automatically generated by semantic techniques. In this paper we present a user study based on a typical semantic technique use

    Repairing Ontologies via Axiom Weakening.

    Get PDF
    Ontology engineering is a hard and error-prone task, in which small changes may lead to errors, or even produce an inconsistent ontology. As ontologies grow in size, the need for automated methods for repairing inconsistencies while preserving as much of the original knowledge as possible increases. Most previous approaches to this task are based on removing a few axioms from the ontology to regain consistency. We propose a new method based on weakening these axioms to make them less restrictive, employing the use of refinement operators. We introduce the theoretical framework for weakening DL ontologies, propose algorithms to repair ontologies based on the framework, and provide an analysis of the computational complexity. Through an empirical analysis made over real-life ontologies, we show that our approach preserves significantly more of the original knowledge of the ontology than removing axioms

    A formal ontology for industrial maintenance

    No full text
    International audienceThe rapid advancement of information and communication technologies has resulted in a variety of maintenance support systems and tools covering all sub-domains of maintenance. Most of these systems are based on different models that are sometimes redundant or incoherent and always heterogeneous. This problem has lead to the development of maintenance platforms integrating all of these support systems. The main problem confronted by these integration platforms is to provide semantic interoperability between different applications within the same environment. In this aim, we have developed an ontology for the field of industrial maintenance, adopting the METHONTOLOGY approach to manage the life cycle development of this ontology, that we have called IMAMO (Industrial MAintenance Management Ontology). This ontology can be used not only to ensure semantic interoperability but also to generate new knowledge that supports decision making in the maintenance process. This paper provides and discusses some tests so as to evaluate the ontology and to show how it can ensure semantic interoperability and generate new knowledge within the platform
    corecore