1,789 research outputs found

    BEHAVIOR BASED CONTROL AND FUZZY Q-LEARNING FOR AUTONOMOUS FIVE LEGS ROBOT NAVIGATION

    Get PDF
    This paper presents collaboration of behavior based control and fuzzy Q-learning for five legs robot navigation systems. There are many fuzzy Q-learning algorithms that have been proposed to yield individual behavior like obstacle avoidance, find target and so on. However, for complicated tasks, it is needed to combine all behaviors in one control schema using behavior based control. Based this fact, this paper proposes a control schema that incorporate fuzzy q-learning in behavior based schema to overcome complicated tasks in navigation systems of autonomous five legs robot. In the proposed schema, there are two behaviors which is learned by fuzzy q-learning. Other behaviors is constructed in design step. All behaviors are coordinated by hierarchical hybrid coordination node. Simulation results demonstrate that the robot with proposed schema is able to learn the right policy, to avoid obstacle and to find the target. However, Fuzzy q-learning failed to give right policy for the robot to avoid collision in the corner location. Keywords : behavior based control, fuzzy q-learnin

    EMBEDDED LEARNING ROBOT WITH FUZZY Q-LEARNING FOR OBSTACLE AVOIDANCE BEHAVIOR

    Get PDF
    Fuzzy Q-learning is extending of Q-learning algorithm that uses fuzzy inference system to enable Q-learning holding continuous action and state. This learning has been implemented in various robot learning application like obstacle avoidance and target searching. However, most of them have not been realized in embedded robot. This paper presents implementation of fuzzy Q-learning for obstacle avoidance navigation in embedded mobile robot. The experimental result demonstrates that fuzzy Q-learning enables robot to be able to learn the right policy i.e. to avoid obstacle

    A Data-driven Model for Interaction-aware Pedestrian Motion Prediction in Object Cluttered Environments

    Full text link
    This paper reports on a data-driven, interaction-aware motion prediction approach for pedestrians in environments cluttered with static obstacles. When navigating in such workspaces shared with humans, robots need accurate motion predictions of the surrounding pedestrians. Human navigation behavior is mostly influenced by their surrounding pedestrians and by the static obstacles in their vicinity. In this paper we introduce a new model based on Long-Short Term Memory (LSTM) neural networks, which is able to learn human motion behavior from demonstrated data. To the best of our knowledge, this is the first approach using LSTMs, that incorporates both static obstacles and surrounding pedestrians for trajectory forecasting. As part of the model, we introduce a new way of encoding surrounding pedestrians based on a 1d-grid in polar angle space. We evaluate the benefit of interaction-aware motion prediction and the added value of incorporating static obstacles on both simulation and real-world datasets by comparing with state-of-the-art approaches. The results show, that our new approach outperforms the other approaches while being very computationally efficient and that taking into account static obstacles for motion predictions significantly improves the prediction accuracy, especially in cluttered environments.Comment: 8 pages, accepted for publication at the IEEE International Conference on Robotics and Automation (ICRA) 201

    A Data-driven Model for Interaction-aware Pedestrian Motion Prediction in Object Cluttered Environments

    Full text link
    This paper reports on a data-driven, interaction-aware motion prediction approach for pedestrians in environments cluttered with static obstacles. When navigating in such workspaces shared with humans, robots need accurate motion predictions of the surrounding pedestrians. Human navigation behavior is mostly influenced by their surrounding pedestrians and by the static obstacles in their vicinity. In this paper we introduce a new model based on Long-Short Term Memory (LSTM) neural networks, which is able to learn human motion behavior from demonstrated data. To the best of our knowledge, this is the first approach using LSTMs, that incorporates both static obstacles and surrounding pedestrians for trajectory forecasting. As part of the model, we introduce a new way of encoding surrounding pedestrians based on a 1d-grid in polar angle space. We evaluate the benefit of interaction-aware motion prediction and the added value of incorporating static obstacles on both simulation and real-world datasets by comparing with state-of-the-art approaches. The results show, that our new approach outperforms the other approaches while being very computationally efficient and that taking into account static obstacles for motion predictions significantly improves the prediction accuracy, especially in cluttered environments.Comment: 8 pages, accepted for publication at the IEEE International Conference on Robotics and Automation (ICRA) 201

    Overcoming barriers and increasing independence: service robots for elderly and disabled people

    Get PDF
    This paper discusses the potential for service robots to overcome barriers and increase independence of elderly and disabled people. It includes a brief overview of the existing uses of service robots by disabled and elderly people and advances in technology which will make new uses possible and provides suggestions for some of these new applications. The paper also considers the design and other conditions to be met for user acceptance. It also discusses the complementarity of assistive service robots and personal assistance and considers the types of applications and users for which service robots are and are not suitable

    Designing SANDRA: An autonomous tour guide robot for the University of Technology, Sydney

    Full text link
    This paper describes how a team of final year mechatronic engineering students developed an autonomous robotic system intended to act as a tour guide during events such as University open days and explores the opportunities this project presented to extend their knowledge and skills. The specifications of the project required the system to localise and navigate autonomously within a known environment while avoiding collisions with any people or obstacles not included in the prior area map. In addition to these requirements, the system needed to locate humans as potential clients, approach and greet them, offer directions and if required take the guest on a guided tour of the university. While taking the subject Advanced Robotics the students were able to develop a functional first prototype of the system and carry out initial tests. Following the completion of the subject a small number of the students opted to continue working on the project developing a second prototype using the knowledge gained and further enhancing their learning experiences. While this project mainly involved integrating existing well known algorithms, software and hardware, it provided an excellent opportunity to enhance the mechatronic engineering skills of the students involved
    • …
    corecore