806 research outputs found

    Dispersion for Data-Driven Algorithm Design, Online Learning, and Private Optimization

    Full text link
    Data-driven algorithm design, that is, choosing the best algorithm for a specific application, is a crucial problem in modern data science. Practitioners often optimize over a parameterized algorithm family, tuning parameters based on problems from their domain. These procedures have historically come with no guarantees, though a recent line of work studies algorithm selection from a theoretical perspective. We advance the foundations of this field in several directions: we analyze online algorithm selection, where problems arrive one-by-one and the goal is to minimize regret, and private algorithm selection, where the goal is to find good parameters over a set of problems without revealing sensitive information contained therein. We study important algorithm families, including SDP-rounding schemes for problems formulated as integer quadratic programs, and greedy techniques for canonical subset selection problems. In these cases, the algorithm's performance is a volatile and piecewise Lipschitz function of its parameters, since tweaking the parameters can completely change the algorithm's behavior. We give a sufficient and general condition, dispersion, defining a family of piecewise Lipschitz functions that can be optimized online and privately, which includes the functions measuring the performance of the algorithms we study. Intuitively, a set of piecewise Lipschitz functions is dispersed if no small region contains many of the functions' discontinuities. We present general techniques for online and private optimization of the sum of dispersed piecewise Lipschitz functions. We improve over the best-known regret bounds for a variety of problems, prove regret bounds for problems not previously studied, and give matching lower bounds. We also give matching upper and lower bounds on the utility loss due to privacy. Moreover, we uncover dispersion in auction design and pricing problems

    Transmit without regrets: Online optimization in MIMO-OFDM cognitive radio systems

    Get PDF
    In this paper, we examine cognitive radio systems that evolve dynamically over time due to changing user and environmental conditions. To combine the advantages of orthogonal frequency division multiplexing (OFDM) and multiple-input, multiple-output (MIMO) technologies, we consider a MIMO-OFDM cognitive radio network where wireless users with multiple antennas communicate over several non-interfering frequency bands. As the network's primary users (PUs) come and go in the system, the communication environment changes constantly (and, in many cases, randomly). Accordingly, the network's unlicensed, secondary users (SUs) must adapt their transmit profiles "on the fly" in order to maximize their data rate in a rapidly evolving environment over which they have no control. In this dynamic setting, static solution concepts (such as Nash equilibrium) are no longer relevant, so we focus on dynamic transmit policies that lead to no regret: specifically, we consider policies that perform at least as well as (and typically outperform) even the best fixed transmit profile in hindsight. Drawing on the method of matrix exponential learning and online mirror descent techniques, we derive a no-regret transmit policy for the system's SUs which relies only on local channel state information (CSI). Using this method, the system's SUs are able to track their individually evolving optimum transmit profiles remarkably well, even under rapidly (and randomly) changing conditions. Importantly, the proposed augmented exponential learning (AXL) policy leads to no regret even if the SUs' channel measurements are subject to arbitrarily large observation errors (the imperfect CSI case), thus ensuring the method's robustness in the presence of uncertainties.Comment: 25 pages, 3 figures, to appear in the IEEE Journal on Selected Areas in Communication
    • …
    corecore