
HAL Id: hal-01073500
https://hal.inria.fr/hal-01073500

Submitted on 6 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Transmit without regrets: online optimization in
MIMO-OFDM cognitive radio systems

Panayotis Mertikopoulos, E. Veronica Belmega

To cite this version:
Panayotis Mertikopoulos, E. Veronica Belmega. Transmit without regrets: online optimization in
MIMO-OFDM cognitive radio systems. IEEE Journal on Selected Areas in Communications, Institute
of Electrical and Electronics Engineers, 2014, 32 (11), pp.1987-1999. �hal-01073500�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49569035?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01073500
https://hal.archives-ouvertes.fr


1

Transmit without Regrets: Online Optimization

in MIMO–OFDM Cognitive Radio Systems
Panayotis Mertikopoulos, Member, IEEE, and E. Veronica Belmega, Member, IEEE

Abstract

In this paper, we examine cognitive radio systems that evolve dynamically over time due to changing user and

environmental conditions. To combine the advantages of orthogonal frequency division multiplexing (OFDM) and

multiple-input, multiple-output (MIMO) technologies, we consider a MIMO–OFDM cognitive radio network where

wireless users with multiple antennas communicate over several non-interfering frequency bands. As the network’s

primary users (PUs) come and go in the system, the communication environment changes constantly (and, in many

cases, randomly). Accordingly, the network’s unlicensed, secondary users (SUs) must adapt their transmit profiles “on

the fly” in order to maximize their data rate in a rapidly evolving environment over which they have no control. In this

dynamic setting, static solution concepts (such as Nash equilibrium) are no longer relevant, so we focus on dynamic

transmit policies that lead to no regret: specifically, we consider policies that perform at least as well as (and typically

outperform) even the best fixed transmit profile in hindsight. Drawing on the method of matrix exponential learning

and online mirror descent techniques, we derive a no-regret transmit policy for the system’s SUs which relies only on

local channel state information (CSI). Using this method, the system’s SUs are able to track their individually evolving

optimum transmit profiles remarkably well, even under rapidly (and randomly) changing conditions. Importantly, the

proposed augmented exponential learning (AXL) policy leads to no regret even if the SUs’ channel measurements are

subject to arbitrarily large observation errors (the imperfect CSI case), thus ensuring the method’s robustness in the

presence of uncertainties.

Index Terms

Cognitive radio; exponential learning; MIMO; OFDM; regret minimization; online optimization.

I. Introduction

The explosive spread of Internet-enabled mobile devices has turned the radio spectrum into a scarce resource which,

if not managed properly, may soon be unable to accommodate the soaring demand for wireless broadband and the ever-
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growing volume of data traffic and cellphone calls. Exacerbating this issue, studies by the US Federal Communications

Commission (FCC) and the National Telecommunications and Information Administration (NTIA) have shown that

this vital commodity is effectively squandered through underutilization and inefficient use: only 15% to 85% of the

licensed radio spectrum is used on average, leaving ample spectral voids that could be exploited for opportunistic radio

access [1, 2].

In view of the above, the emerging paradigm of cognitive radio (CR) has attracted considerable interest as a

promising counter to spectrum scarcity [3–6]. At its core, this paradigm is simply a two-level hierarchy between

communicating users based on spectrum licensing. On the one hand, the network’s primary users (PUs) have purchased

spectrum rights but allow others to access it provided that their negotiated quality of service (QoS) guarantees are not

violated; on the other hand, the network’s secondary users (SUs) are free-riding on the licensed part of the spectrum,

but they have no QoS guarantees and must conform to the constraints imposed by the PUs. In this way, by opening up

the unfilled “white spaces” of the licensed spectrum to opportunistic radio access, the overall utilization of the wireless

medium can be greatly increased without compromising the performance guarantees that the network’s licensed users

have already paid for.

Orthogonally to the above, the seminal prediction that multiple-input and multiple-output (MIMO) technologies can

lead to substantial gains in information throughput [7, 8] opens up additional ways for overcoming spectrum scarcity.

In particular, by employing multiple antennas, it is possible to exploit spatial degrees of freedom in the transmission

and reception of radio signals, the only physical limit being the number of antennas that can be deployed on a portable

device. As a result, the existing wireless medium can accommodate greater volumes of data traffic per Hertz without

requiring the reallocation (and subsequent re-regulation) of additional frequency bands.

In this paper, we combine these two approaches and focus on dynamic MIMO cognitive radio systems comprising

several wireless users (primary and secondary alike) who communicate over multiple non-interfering channels. In

this evolving (and unregulated) context, the intended receiver of a message has to cope with unwarranted interference

from a large number of transmitters, a factor which severely limits the capacity of the wireless system in question. As a

result, given that the system’s SUs cannot rely on contractual QoS guarantees to achieve their desired throughput levels,

the maximization of their achievable transmission rates under the operational constraints imposed by the network’s

PUs becomes a critical issue.

On that account, and given that the theoretical performance limits of MIMO systems still elude us (even in basic

network models such as the interference channel), a widespread approach is to treat the interference from other users

as additive colored noise and to use the mutual information for Gaussian input and noise as a unilateral performance

metric [8]. However, since users cannot be assumed to have full information on the wireless system as it evolves

over time (due to the arrival of new users, fluctuations in the PUs’ demand, etc.), they must optimize their signal

characteristics “on the fly”, based only on locally available information. Hence, our aim is to derive a dynamic transmit

policy that allows the system’s SUs to adapt to changes in the wireless medium and to track their individually optimum

transmission profiles using only local (and possibly imperfect) channel state information (CSI).

This setting is fairly general and involves cognitive SUs with significant control over both spatial (MIMO) and
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spectral (OFDM) degrees of freedom. To the best of our knowledge, only special cases of this problem have been

considered in a CR setting. For instance, [9–11] analyzed the case where there is only one channel and the environment

is static (i.e. the system’s SUs only react to each other and the PUs’ spectrum utilization is fixed); in this context, [9]

characterized the best spatial covariance profile for the interacting SUs whereas [10, 11] described how to reach a

Nash equilibrium in the resulting non-cooperative game. On the other hand, the authors of [12–15] proposed different

learning schemes for optimal channel selection in dynamic environments where the PUs’ evolving behavior cannot be

anticipated by the system’s SUs, but only in the case where the SUs are equipped with a single antenna and cannot

split power across subcarriers.

Extending the above considerations, our goal in this paper is to derive an adaptive transmit policy for SU rate

optimization in dynamically evolving MIMO–OFDM cognitive radio networks. In this online optimization framework,

the most widely used performance criterion is that of regret minimization, a concept which was first introduced by

Hannan [16] and which has since given rise to a vigorous literature at the interface of optimization, statistics, game

theory, and machine learning – see e.g. [17, 18] for a comprehensive survey. Specifically, in the language of game

theory, the notion of (external) regret compares the agent’s cumulative payoff over time to what he would have obtained

by constantly playing the same action. Accordingly, the purpose of regret minimization is to devise learning policies

that lead to vanishingly small regret against any fixed action and irrespective of how the agent’s environment evolves

over time.

In view of the above, we will focus on no-regret policies that perform at least as well as the asymptotically best fixed

policy in terms of each user’s achievable transmission rate – despite the fact that the latter cannot be determined by the

SUs when they have no means to anticipate the PUs’ behavior. In particular, motivated by the no-regret properties of

the exponential weight (EW) algorithm for problems with discrete action sets [17, 19–21], we propose an augmented

exponential learning (AXL) approach that can be applied to the continuous regret minimization problem at hand with

minimal information requirements. A key challenge here is that any learning algorithm must respect the problem’s

semidefiniteness constraints; as such, an important component of our AXL scheme is the continuous-time technique

of matrix exponential learning that was recently introduced for ordinary (as opposed to online) rate optimization

problems in MIMO multiple access channels (MACs) [22] – and which is in turn closely related to the online mirror

descent approach of [18] and the matrix regularization techniques of [23].

Of course, since the SUs’ optimal transmit profile varies over time, the notions of convergence and/or convergence

speed are no longer applicable; instead, the figure of merit is the rate at which the SUs attain a no-regret state. In that

respect, AXL guarantees a worst-case average regret of O(T−1/2) after T epochs, a bound which is well known to be

tight [17, 18]. Additionally, AXL retains its no-regret properties even if the SUs’ channel measurements are subject

to arbitrarily large observation errors (the imperfect CSI case), thus providing significant performance improvements

over more traditional water-filling methods that are sensitive to perfect CSI. As a result, the system’s SUs are able

to track their individually optimum transmit profile as it evolves over time remarkably well, even under rapidly (and

randomly) changing conditions.
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Paper Outline and Summary of Results

The breakdown of our paper is as follows: in Section II, we introduce our MIMO–OFDM cognitive radio network

model and the notion of a no-regret transmission policy in the context of SU rate optimization. In Section III, we

decompose this online rate optimization problem into two components, and we propose a no-regret algorithm for each

one. Specifically, in Section III-A, we propose an adaptive power allocation policy for the problem’s OFDM compo-

nent, whereas in Section III-B, we derive a dynamic signal covariance policy for the problem’s MIMO component

based on matrix exponential learning. These components are fused in Section IV where we present our augmented

exponential learning (AXL) method for the general MIMO-OFDM setting and we show that it leads to no regret

(Theorem 1). Importantly, we also show that the AXL algorithm retains its no-regret properties even when the users

only have imperfect CSI at their disposal (Theorem 2). This theoretical analysis is validated and supplemented by

numerical simulations in Section V where we also examine the users’ ability to track their individually optimum

transmit characteristics. To facilitate presentation, proofs and technical details have been delegated to a series of

appendices at the end of the paper.

II. SystemModel

A. The Network Model

The cognitive radio system that we will focus on consists of a set of non-cooperative wireless MIMO users (primary

and secondary alike) that communicate over several non-interfering subcarriers by means of an OFDM scheme [24,

25]. Specifically, let Q = P ∪ S denote the set of the system’s users with P (resp. S) representing the system’s primary

(resp. secondary) users; assume further that each user q ∈ Q is equipped with mq transmit antennas and that the radio

spectrum is partitioned into a set K = {1, . . . ,K} of K orthogonal frequency bands [24]. Then, the aggregate signal

ys
k ∈ Cns on the k-th subcarrier at the intended receiver of the secondary user s ∈ S (assumed equipped with ns receive

antennas) will be:

ys
k = Hss

k xs
k +

∑
p∈P

Hps
k xp

k +
∑

r∈S,r,s
Hrs

k xr
k + zs

k, (1)

where xq
k ∈ Cmq is the transmitted message of user q ∈ Q (primary or secondary) over the k-th subcarrier, Hqs

k is the

channel matrix between the q-th transmitter and the intended receiver of user s, and zs
k ∈ Cns is the noise in the channel,

including thermal, atmospheric and other peripheral interference effects (and modeled as a non-singular, zero-mean

Gaussian vector). Accordingly, if we focus for simplicity on a specific SU and drop the user index s ∈ S in (1), we

obtain the signal model

yk = Hkxk + wk, (2)

where wk denotes the multi-user interference-plus-noise (MUI) over subcarrier k ∈ K at the intended receiver.

The covariance of wk in (2) obviously changes over time due to fading, modulations in the PUs’ behavior, etc.;

as a result, employing sophisticated successive interference cancellation (SIC) techniques at the receiver is highly

nontrivial, especially with regards to the system’s unregulated secondary users; Instead, we will work in the single

user decoding (SUD) regime where interference by other users (primary and secondary alike) is treated as additive,
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colored noise. In this context, the transmission rate of a user under the signal model (2) is given by the familiar

expression [8, 24]:

Φ(P) =
∑

k
[
log det

(
Wk + HkPkH†k

)
− log det Wk

]
, (3)

where:

1) Wk = E
[
wkw†k

]
is the multi-user interference-plus-noise covariance matrix over subcarrier k.

2) Pk = E[xkx†k] is the covariance matrix of the user’s transmitted signal on subcarrier k and P = diag(P1, . . . ,PK)

denotes the user’s transmit profile over all subcarriers. In particular, we will write for convenience:

Pk = pkQk, (4)

where pk = E[x†kxk] denotes the user’s transmit power over subcarrier k and Qk = E
[
xkx†k

]/
E

[
x†kxk

]
is his

normalized signal covariance matrix.

Hence, given that Wk may change over time due to evolving user conditions, we obtain the time-dependent objective:

Φ(P; t) =
∑

k log det
[
I + H̃k(t) Pk H̃†k(t)

]
, (5)

where the effective channel matrices H̃k are given by

H̃k(t) = Wk(t)−1/2 Hk(t), (6)

and the time variable t = 1, 2, . . . is assumed discrete (for instance, corresponding to the epochs of a time-slotted

system).

Obviously, since we are putting no constraints on the behavior of the system’s users, the evolution of the effective

channel matrices H̃k(t) over time can be quite arbitrary as well. Formally, we only make the following (minimal)

assumptions:

A1) The effective channel matrices H̃k(t) are bounded for all t.

A2) The matrices H̃k(t) change sufficiently slowly relative to the coherence time of the channel so that the standard

results of information theory [8] continue to hold.

A3) SUs can obtain possibly imperfect (but otherwise unbiased) estimates for H̃k, e.g. by measuring Hk and probing

the intended receiver for the MUI covariance matrix Wk.

In light of the above, and motivated by the “white-space filling” paradigm advocated (e.g. by the FCC) as a means to

minimize interference by unlicensed users [1, 2, 10, 26, 27], we will consider the following constraints for the system’s

SUs:

C1) Bounded total transmit power:

tr(P) =
∑

k pk ≤ P. (7a)

C2) Constrained transmit power per subcarrier:

tr(Pk) = pk ≤ Pk. (7b)
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C3) Null-shaping constraints:

U†kPk = 0, (7c)

for some tall complex matrix Uk with full column rank.

Of the constraints above, (7a) is a physical constraint on the user’s total transmit power, (7b) imposes a limit on

the interference level that can be tolerated on a given subcarrier, and (7c) is a “hard”, spatial version of (7b) which

guarantees that certain spatial dimensions per subcarrier are only open to licensed, primary users. In more detail, (7b)

is equivalent to limiting the maximal average interference that SUs are allowed to incur on the primary transmission

while the matrices Uk of (7c) are imposed by the PUs and their columns represent the spatial directions which are

forbidden to SU transmission. Such constraints are well-documented in the literature and simply reflect the fact that

some carriers or spatial directions per carrier are preferred by the PUs, so stricter constraints are imposed to limit

interference by SUs (for a more detailed discussion, see e.g. [10, 11, 25] and references therein).

Of course, to maximize (5) in the absence of energy awareness considerations, the user must saturate his total power

constraint (7a) by transmitting at the highest possible (total) power.1 Thus, the set of admissible transmit profiles for

the rate function (5) may be expressed as:

X =
{
diag(P1, . . . ,PK) : Pk ∈ Cmk×mk ,

Pk < 0, 0 ≤ tr(Pk) ≤ Pk and
∑

k tr(Pk) = P
}
, (8)

where mk ≡ nullity(Uk) is the number of spatial dimensions that are open to SUs on subcarrier k. Accordingly, writing

Pk in the decoupled form Pk = pkQk as in (4), we obtain the decomposition X = X0 ×
∏

k Dk where

X0 =
{
p ∈ RK : 0 ≤ pk ≤ Pk,

∑
k pk = P

}
(9)

denotes the set of admissible power allocation vectors and

Dk =
{
Qk ∈ Cmk×mk : Qk < 0, tr(Qk) = 1

}
(10)

is the set of admissible normalized covariance matrices for subcarrier k. We thus obtain the online rate maximization

problem:
maximize Φ(P; t)

subject to


P = diag(p1Q1, . . . , pKQK),

(p1, . . . , pK) ∈ X0, Qk ∈ Dk.

(ORM)

Remark 1. In the following sections, we will need the derivatives of Φ; to that end, some matrix calculus yields

∂Φ

∂P∗k
≡Mk(t) = H̃†k(t)

[
I + H̃k(t)PkH̃†k(t)

]−1H̃k(t), (11)

1Our analysis can be extended to energy-aware objectives where (7a) is not saturated, but we will not pursue such directions due to space

limitations.
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where P∗k denotes the complex conjugate of Pk. Since the effective channel matrices H̃k(t) are assumed bounded for all

t, the above shows that there exists some M > 0 such that:

‖Mk(t)‖ ≤ M for all k ∈ K, P ∈ X, and for all t ≥ 0. (12)

B. Online Optimization and Regret Minimization

In our setting, there is no direct causal link between the PUs’ behavior and the choices of the SUs, so the rate

function Φ may change arbitrarily over time. This leads to a “game against nature” which is played out as follows:

1) At each time slot t = 1, 2 . . . , the agent (i.e. the focal SU) selects an action (transmit profile) P(t) ∈ X.

2) The agent’s payoff (transmission rate) Φ(P(t); t) is determined by nature and/or the behavior of other users (via

the effective channel matrices H̃k).

3) The agent employs some decision rule (dynamic transmit policy) to pick a new transmit profile P(t + 1) ∈ X at

stage t + 1, and the process is repeated until transmission ends.

In this dynamic setting, static solution concepts are no longer applicable, so the most widely used optimization

criterion is that of regret minimization, a long-term solution concept which was first introduced by Hannan [16] and

which has since given rise to an extremely active field of research at the interface of optimization, statistics and

theoretical computer science – see e.g. [17, 18] for a survey. Roughly speaking, the regret compares the payoff obtained

by an agent that follows a dynamic policy to the payoff that he would have obtained by constantly choosing the same

action over the entire transmission horizon. More precisely, the cumulative regret of the dynamic policy P(t) ∈ X with

respect to P0 ∈ X is defined as:

RegT (P0) =
∑T

t=1

[
Φ(P0; t) − Φ(P(t); t)

]
, (13)

i.e. RegT (P0) measures the cumulative transmission rate difference up to stage T between a benchmark transmit profile

P0 ∈ X and the dynamic policy P(t). The user’s average regret then is T−1 RegT (P0) and the goal of regret minimization

is to devise a dynamic policy P(t) that leads to no regret, viz.

lim sup
T→∞

1
T

RegT (P0) ≤ 0, (14)

for all P0 ∈ X and irrespective of the evolution of the objective Φ(·; t) over time. In other words, if we interpret

limT→∞ T−1 ∑T
t=1 Φ(P0; t) as the long-term average transmission rate of P0, (14) means that the average data rate of the

dynamic transmit policy P(t) must be at least as good as that of any benchmark profile P0 ∈ X.

Remark 2. Obviously, if the optimum transmit policy which maximizes (ORM) could be predicted at every stage

t = 1, 2, . . . in an oracle-like fashion, we would have RegT (P0) ≤ 0 in (13) for all P0 ∈ X. Therfore, the requirement

(14) is fundamental in the context of online optimization because negative regret is a key indicator of tracking the

maximum of (ORM) as it evolves over time.

Remark 3. In the machine learning literature, there exist other notions of regret (such as internal, swap or adaptive

regret [28]) for studying online optimization problems in changing environment. Due to space limitations, we will
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focus our theoretical analysis on the external regret formulation (13) and we will rely on the numerical simulations

of Section V to show how well our proposed dynamic policies track the evolving maximum of the rate maximization

problem (ORM).

Remark 4. If the channel matrices are drawn at each realization from an isotropic distribution [29], spreading power

uniformly across carriers and antennas is the optimal choice when nature (including the network’s PUs) is actively

choosing the worst possible channel realization for the transmitter [29]. A no-regret policy extends this “min-max”

concept by ensuring that the policy’s achieved transmission rate is asymptotically as good as that of any fixed transmit

profile, including obviously the uniform one as a special case where nature is actively playing against the transmitter

– e.g. jamming.

III. Power Allocation and Signal Covariance Optimization

To build intuition step-by-step, we will break up the online rate maximization problem (ORM) in simpler compo-

nents and we will derive a no-regret transmit policy for each one based on an exponential learning principle. These

policies will then be fused into an adaptive transmit policy for the full MIMO–OFDM problem in Section IV.

A. The OFDM Component: Online Power Allocation

1) A gentle start – the case Pk ≥ P: For illustration purposes, we first examine the case where the power-per-

channel constraints (7b) can be absorbed in the total power constraint (7a), i.e. Pk ≥ P for all k ∈ K. Also, for scaling

purposes, it will be more convenient to consider the normalized power variables

qk = pk/P. (15)

With this in mind, if the normalized signal covariance profile Q = diag(Q1, . . . ,QK) of the focal SU is kept fixed, we

obtain the online power allocation problem:

maximize Φ(q; t),

subject to q ∈ ∆

(OPA)

where ∆ =
{
q ∈ RK

+ :
∑K

k=1 qk = 1
}

denotes the set of feasible (normalized) power allocation profiles and we write

Φ(q; t) to highlight the dependence of the rate function (5) on the normalized power allocation profile q ∈ ∆ (instead

of P ∈ X).

A special case of this problem is when the user cannot split power across subcarriers and can only choose one

channel on which to transmit. Essentially, this channel selection framework boils down to the famous “multi-armed

bandit” problem of [30] (see e.g. [17, 18] for a review). As a result, much recent work on CR networks [13–15] has

been focused on no-regret channel selection algorithms based on Q-learning [14] or upper confidence bound (UCB)

techniques [13].

Unfortunately, these techniques are inherently discrete in nature, so it is not clear how to extend them to the

continuous context of (OPA). Instead, motivated by the exponential weight algorithm introduced in [19–21] for
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sequence prediction, our approach consists of scoring each channel over time and then allocating power proportionally

to the exponential of these scores. In particular, inspired by the analysis of [31], each channel will be scored by means

of the marginal utilities:

vk =
∂Φ

∂qk
= P

∂Φ

∂pk
= P · tr

[
MkQk

]
, (16)

where Qk ∈ Dk is the user’s (fixed) covariance matrix and Mk is given by (11). We thus obtain the exponential learning

power allocation policy:
yk(t) = yk(t − 1) + vk(t),

qk(t + 1) =
exp

(
ηt−1/2yk(t)

)∑
` exp

(
ηt−1/2y`(t)

) , (XL-PA)

where η > 0 is a learning rate parameter and the
√

t factor has been included to moderate very sharp score differences.

Our first result is that (XL-PA) performs asymptotically as well as any fixed power allocation profile q0 ∈ ∆:

Proposition 1. If Pk ≥ P for all k ∈ K, the policy (XL-PA) leads to no regret. Specifically, for every q0 ∈ ∆, and

independently of the system’s evolution over time, we have

1
T

RegT (q0) ≤
1
√

T

(
log K
η

+ 4P2M2η

)
, (17)

with M given by (12).

Proof: See Appendices A and E.

Remark 1. The use of the marginal utilities (16) in the exponential learning policy (XL-PA) can be compared to the

online gradient descent algorithm introduced in [32] where the learner tracks the gradient of his evolving objective

and projects back to the problem’s feasible set when needed. We did not take such an approach because projections

are numerically unstable [33] and can become quite costly from a computational standpoint (the problem’s constraints

would have to be checked individually at every iteration). Nonetheless, the exponential approach of (XL-PA) has

strong ties to the method of online mirror descent [18] which we discuss later.

2) The general case: The dynamic power allocation policy (XL-PA) concerns the case where the power-per-channel

constraints (7b) can be absorbed in the total power constraint (7a). Otherwise, if Pk < P for some channel k ∈ K (e.g.

if certain PUs have very low interference tolerance on their licensed channels), (XL-PA) cannot be employed “as

is” because it does not respect the constraint pk ≤ Pk. When this is the case, the analysis of Appendix B yields the

modified policy:
yk(t) = yk(t − 1) + vk(t),

pk(t + 1) = Pk

(
1 + exp(λ − ηt−1/2yk)

)−1
(XL-PA′)

where λ > 0 is defined implicitly so that (7a) is satisfied:

P =
∑

k∈K Pk

(
1 + exp(λ − ηt−1/2yk)

)−1
. (18)
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Just like (XL-PA), (XL-PA′) exhibits exponential sensitivity to the scores yk modulo a normalization factor corre-

sponding to the constraints (7a) and (7b). Since the RHS of (18) is strictly decreasing in λ, it is then easy to calculate

the value of λ itself, e.g. by performing a line search for eλ [33].2 We thus get:

Proposition 2. The policy (XL-PA′) leads to no regret. In particular, for every p0 ∈ X0, the user’s regret is bounded

by

T−1 RegT (p0) ≤ O
(
T−1/2), (19)

irrespective of the system’s evolution over time.

Proof: See Appendix B.

Remark. We should note here that (XL-PA′) is not equivalent to (XL-PA) if Pk ≥ P; instead, (XL-PA) should be viewed

as a simpler alternative to (XL-PA′) that can be employed whenever the maximum power-per-channel constraints (7b)

can be subsumed in the total power constraint (7a). For convenience, we will present our results in the simpler case

Pk ≥ P and we will rely on a series of remarks to translate these remarks to the regime Pk < P (cf. Appendices A and

B).

B. The MIMO Component: Signal Covariance Optimization

If the user’s power allocation profile p = (p1, . . . , pK) remains fixed throughout the transmission horizon, (ORM)

boils down to the online signal covariance optimization problem:

maximize Φ(Q; t),

subject to Qk < 0, tr(Qk) = 1,
(OCOV)

where we now use the notation Φ(Q; t) to highlight the dependence of the user’s transmission rate (5) on the normalized

covariance matrix Q = diag(Q1, . . . ,QK) ∈ X+ ≡
∏

k Dk.

A key challenge in (OCOV) is that any learning algorithm must respect the problem’s (implicit) semidefiniteness

constraints Qk < 0. To that end, motivated by the analysis of [22] (see also the matrix regularization approach of [23]),

we will consider the matrix exponential learning policy

Yk(t) = Yk(t − 1) + Vk(t),

Qk(t + 1) =
exp

(
ηt−1/2Yk(t)

)
tr

[
exp

(
ηt−1/2Yk(t)

)] , (XL-COV)

where the matrix-valued gradient payoff Vk is defined as:

Vk =
∂Φ

∂Q∗k
= pkMk, (20)

and Mk is given by (11). Intuitively, (XL-COV) reinforces the spatial directions that peform well by increasing the

corresponding eigenvalues while the t−1/2 factor keeps the eigenvalues of Qk from approaching zero too fast [35].

Along these lines, our analysis in Appendix C yields:

2See also [34] for a closed-form expression of (XL-PA′) based on a modified version of the replicator equation of evolutionary game theory.
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Proposition 3. The dynamic transmit policy (XL-COV) leads to no regret in the online signal covariance optimization

problem (OCOV). In particular, for every Q0 ∈ X+ ≡
∏

k Dk, and irrespective of the system’s evolution over time, we

have:
1
T

RegT (Q0) ≤
1
√

T

∑K
k=1 log mk

η
+ 4P2M2η

 , (21)

where mk is the number of spatial degrees of freedom left open by the constraint (7c).

IV. Learning in the FullMIMO–OFDM Problem

A. Augmented Exponential Learning

Based on the analysis of the previous section, we derive here a dynamic no-regret policy for the full MIMO–OFDM

problem (ORM). Working for simplicity with the special case Pk ≥ P, (XL-PA) and (XL-COV) yield the dynamic

transmit policy:

Algorithm 1 Augmented Exponential Learning (AXL)

Parameter: η > 0.

Initialize: t ← 0; channel scores yk ← 0, Yk ← 0.

Repeat
t ← t + 1;

foreach channel k ∈ K do

set


pk ← P exp

(
ηt−1/2yk

)/∑
` exp

(
ηt−1/2y`

)
;

Qk ← exp
(
ηt−1/2Yk

)/
tr

[
exp

(
ηt−1/2Yk

)]
;

foreach channel k ∈ K do

measure Mk ← H̃†k
[
I + pkH̃kQkH̃†k

]−1H̃k;

update scores:


yk ← yk + P tr[MkQk];

Yk ← Yk + pkMk;

until transmission ends.

The augmented exponential learning (AXL) algorithm above will be our main focus, so a few remarks are in order:

Remark 1. From an implementation point of view, AXL has the following desirable properties:

(P1) It is distributed: each SU only needs to update his individual transmit policy using local CSI (the matrices H̃k).

(P2) It is asynchronous: there is no need for a global update timer to synchronize the system’s SUs.

(P3) It is stateless: the SUs do not need to know the state of the system (e.g. the network’s topology), and/or be aware

of each other’s actions.

(P4) It is reinforcing: the SUs tend to increase their unilateral transmission rates.
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Remark 2. If the maximum power-per-channel constraints imposed on the network’s SUs do not satisfy the condition

Pk ≥ P for all k ∈ K, the power update step of AXL must be modified: specifically, the exponential allocation

rule pk ← P exp(ηt−1/2yk)
/∑

` exp(ηt−1/2y`) must be replaced by the update rule of (XL-PA′), i.e. by setting pk ←

Pk
[
1 + exp(λ − ηt−1/2yk)

]−1. To simplify our presentation, we will keep the assumption Pk ≥ P with the implicit

understanding that if Pk < P for some k ∈ K, then it is the modified version of AXL that should be used instead.

With all this in mind, our main result is that the AXL algorithm leads to no regret if Pk ≥ P for all channels:

Theorem 1. The adaptive transmit policy generated by AXL leads to no regret in the online rate maximization problem

(ORM). In particular, for every fixed transmit profile P0 ∈ X, and independently of how the system’s rate function (5)

evolves over time, the user’s regret is bounded by:

1
T

RegT (P0) ≤
1
√

T

 log K +
∑K

k=1 log mk

η
+ 4P2M2η

 , (22)

where M is given by (12) and mk is the number of spatial dimensions that are left open to SUs by the constraint (7c).

Proof: See Appendices D and E.

Remark 1. As we already explained, if Pk < P for some k ∈ K, the power update step in the AXL algorithm should

be replaced by the power allocation rule (XL-PA′). In this case, AXL still guarantees an O(T−1/2) regret bound but the

exact expression is more complicated (see Appendix B for the details).

Remark 2. The proof of Theorem 1 relies on a deep connection between (XL-PA) and (XL-COV) with the Gibbs–Shannon

and von Neumann entropy functions respectively. In fact, as we shall see in Appendices A–B, our approach is

intimately related to the Hessian–Riemannian optimization method of [36] and the online mirror descent techniques of

[18, 23]. Unfortunately, a full description of these methods requires the introduction of significant technical apparatus,

so we will not discuss them at length; for a detailed account, the reader is instead referred to [18, 35].

Remark 3. It should also be noted that the bound (22) is not the sum of the bounds (17) and (21). As we show in

Appendices D and E, the reason for this is that Theorem 1 is not a corollary of Propositions 1 and 3 but, rather, a

combination of these two independent results.

Remark 4. In practice, the learning parameter η of the AXL algorithm can be tuned freely by the user. As such, if

the user can estimate ahead of time the quantity M (which can be seen as an effective bound on the gradient matrices

Mk over time), η can be chosen so as to optimize the regret guarantee (22) – thus leading to lower regret levels faster.

Specifically, some calculations along the lines of [35] show that the optimal choice of η which minimizes the RHS of

(22) is:

η = 1
2 PM

(
log K +

∑
k log mk

)1/2 , (23)

which then leads to the optimized regret guarantee:

RegT (P0) ≤ 4PM
(

log K +
∑

k log mk
)1/2T 1/2. (24)
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This bound resembles the bound derived in [23] for learning processes that stop after a predetermined number of

steps; that being said (and in contrast to Theorem 1), unless some sort of “doubling correction” is used [17], the method

proposed in [23] may lead to positive regret in an infinite horizon setting (such as the one we are considering here).

On the other hand, this also shows that if the user can estimate his transmission horizon in advance (instead of having

an infinite backlog of data to transmit), then he can use AXL with constant parameter η given by (23) and still enjoy

the optimal regret guarantee (24).

Remark 5. Finally, we note that the optimal bound (24) is asymptotically tight with respect to T but not necessarily

with respect to the dimensionality of the problem. In particular, the analysis of [17, 18] shows that the best bound

that can be guaranteed against an adversarial nature is O(
√

T ); furthermore, if the state space of the problem is a

simplex of dimension K, the tightest possible bound is O(log K) [17]. In this way, the log K factor of (24) is tight; we

conjecture that the same holds for the log mk factors because the covariance spectrahedrons Dk are simply the product

of a simplex with dimension mk with the space of unitary matrices. At any rate, the bound (24) only tightens against an

adversarial nature, so, in practical situations, we expect the user’s regret to decay much more rapidly (cf. the numerical

simulations of Section V).

B. Learning with Imperfect Channel State Information

In practice, a major challenge occurs if the user does not have perfect CSI with which to calculate the matrix

gradients (11) that are needed to run the AXL algorithm. To wit, since these gradients are determined by the effective

channel matrices H̃k = W−1/2
k Hk, imperfect measurements of the actual channel matrices Hk or of the multi-user

interference-plus-noise covariance matrices Wk would invariably interfere with each update cycle. Accordingly, our

aim in this section is to study the robustness of AXL in the presence of measurement errors.

To account for as wide a range of errors as possible, we will assume that at each update period t = 1, 2, . . . , the user

can only observe a noisy estimate

M̂k(t) = Mk(t) + Ξk(t) (25)

of Mk(t), where the noise process Ξk(t) represents a random and unbiased observational error (not necessarily i.i.d.).

Formally:

Assumption 1. We assume that the observation error Ξk is:

1) Bounded: ‖Ξk(t)‖ ≤ Σ (a.s.) for some Σ > 0 and for all t.

2) Unbiased: E
[
Ξk(t)|Ft−1

]
= 0 where F = {Ft}t≥1 denotes the history of the user’s choices.

Remarkably, as long as there is no systematic bias in the user’s measurements, the AXL algorithm still leads to no

regret, even in the presence of arbitrarily large observation errors:

Theorem 2. The AXL algorithm with noisy observations M̂k of the form (25) leads to no regret (a.s.). Specifically, if

‖Ξk‖ ≤ Σ, then, for all P0 ∈ X and for all z > 0:
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(i) The user’s expected regret is bounded by:

E
[
T−1 RegT (P0)

]
≤ RT−1/2. (26)

(ii) The user’s realized regret is bounded by the perfect CSI guarantee of AXL with exponentially high probability:

P

(
1
T

RegT (P0) ≤
R
√

T
+ z

)
≥ 1 − exp

(
−

z2T
2D2Σ2

)
, (27)

where D > 0 is a constant and R is the deterministic guarantee (22) of AXL under perfect CSI, viz.:

R = η−1 ·
(

log K +
∑

k log mk
)

+ 4P2M2η. (28)

Theorem 2 (proven in Appendix F) shows that AXL guarantees an O(T−1/2) bound on the user’s regret with high

probability, even under measurement errors of arbitrarily high magnitude. Accordingly, a few remarks are in order:

Remark 1. The first- and second-order statistics of the measured gradients M̂k play different roles in the presence

of imperfect CSI: the expected value E
[
M̂k

]
= Mk of M̂k controls the expected regret guarantee of AXL via (26),

whereas the variance Var
(
M̂k

)
= E

[
‖Ξk‖

2] of M̂k controls the deviations of the regret from its “bulk” behavior – but

has no impact on the expected regret of AXL.

Remark 2. Note also that Theorem 1 is recovered by (27) in the deterministic limit Σ → 0+: the probability that the

user’s regret exceeds the determinstic guarantee R/
√

T converges uniformly to 0 as Σ→ 0+.

V. Numerical Results

To validate the predictions of Section IV for the AXL algorithm, we conducted extensive numerical simulations

from which we illustrate here a selection of the most representative scenarios – though the observations made below

remain valid in most typical mobile wireless environments.

In Fig. 1, we simulated a network consisting of 10 PUs and 40 SUs, all equipped with mk = 3 transmit/receive

antennas, and communicating over K = 256 orthogonal subcarriers with a base frequency of ν = 2 GHz. Both the

PUs and the SUs were assumed to be mobile with a speed between 3 and 5 km/h (pedestrian movement), and the

channel matrices Hqs
k of (2) were modeled after the well-known Jakes model for Rayleigh fading [37]. For simplicity,

we assumed that the PUs were going online and offline following a Poisson process (representing exponential arrivals

with exponential call times), while the simulated SUs employed the AXL algorithm with η = 1 and an update epoch

of δ = 5 ms.3 We then calculated the maximum regret induced by the AXL for every SU with respect to the uniform

transmit profile (where power is spread equally across antennas and frequency bands) and all possible combinations

of spreading power uniformly across subcarriers while keeping one or two transmit dimensions closed (we plotted the

regret for only 7 SUs in order to reduce graphical clutter). The results of these simulations were plotted in Fig. 1(a): as

predicted by Theorem 1, AXL leads to no regret and falls below the no-regret threshold within a few epochs, indicating

that its average performance is strictly better than any of the benchmark transmit profiles.

3We did not optimize the choice of η because we wanted to focus on the case where the network’s SUs have minimal information.
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For comparison purposes, we also simulated the same scenario but with the SUs employing a randomized transmit

policy. In particular, motivated by [29], we simulated the randomized transmit policy:

Qk(t + 1) = (1 − r)Qk(t) + rRk(t),

Qk(0) = m−1
k I,

(29)

where the matrix Rk(t) is drawn uniformly from the spectrahedron Dk of mk × mk positive-definite matrices with unit

trace, and r ∈ [0, 1] is a discount parameter interpolating between the uniform distribution Qk ∝ I for r = 0 and the

completely random policy Rk for r = 1 (in our simulations, we took r = 0.9). Even though this dynamic transmit

policy is sampling the state space essentially uniformly for large values of r, Fig. 1(b) shows that several SUs end

up having positive regret. We thus see that the no-regret property of AXL is not a spurious artifact of exploring the

problem’s state space in a uniform way, but it is inextricably tied to the underlying learning mechanism.

The negative-regret results of Fig. 1 also suggest that the transmission rate achieved by a given SU is close to

the user’s (evolving) maximum possible rate given the transmit profiles of every other user. To test this hypothesis,

we plotted in Fig. 2 the achieved data rate of a SU employing the AXL algorithm along with the user’s maximum

achievable data rate and the rates achieved by the uniform policy and the randomized policy (29); to test different

fading conditions, we simulated average user velocities of v = 5 m/s and v = 15 m/s (Figs. 2(a) and 2(b) respectively).

We see there that AXL adapts to the changing channel conditions and tracks the user’s maximum achievable rate

remarkably well, in stark contrast to the uniform and randomized transmit policies.4

Finally, to assess the performance of the AXL algorithm with respect to the users’ sum rate under successive

interference cancellation (SIC) and the robustness of AXL under imperfect CSI, we simulated in Fig. 3 a static multi-

user MIMO multiple access channel consisting of a wireless base receiver with 5 antennas, 10 PUs and 40 SUs (each

with a random number of transmit antennas picked uniformly between 2 and 6). Each user’s channel matrix Hqr
k ≡ Hq

k

was drawn from a complex Gaussian distribution at the outset of the transmission (but remained static once picked),

and we then ran the AXL algorithm with η = 1. The algorithm’s performance over time was then assessed by plotting

the efficiency ratio

eff(t) =
Ψ(t) − Ψmin

Ψmax − Ψmin
, (30)

where Ψ(t) denotes the users’ sum rate at the t-th iteration of the algorithm, and Ψmax (resp. Ψmin) is the maximum

(resp. minimum) value of Ψ over the set of feasible transmit profiles.5 For comparison purposes, we also plotted the

efficiency ratio achieved by water-filling methods – namely iterative water-filling (IWF) and simultaneous water-filling

(SWF) [38]. Remarkably, when the users have perfect CSI, the AXL policy achieves the system’s maximum sum rate

within 3–4 iterations; by contrast, SWF fails to converge altogether while the convergence time of IWF scales linearly

with the number of SUs (Fig. 3(a)). On the other hand, in the presence of imperfect CSI (modeled as zero-mean i.i.d.

4If the user’s velocity becomes exceedingly high, the quality of this tracking may deteriorate as a result of the channel’s extreme variability; even

in this case however, AXL is guaranteed to perform at least as well as the best fixed transmit profile in hindsight.
5The reason for using this ratio was to eliminate scaling artifacts arising e.g. from the sum rate taking values in a narrow band close to its

maximum value.
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Gaussian pertrubations to the gradient matrices Mk with relative magnitude of 50%), AXL still achieves the system’s

sum capacity (albeit at a slower rate) whereas water-filling methods offer no significant advantage over the user’s initial

transmit profile (cf. Fig. 3(b)).
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(a) No regret under augmented exponential learning.
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(b) Positive regret under randomized power allocation.

Fig. 1. The long-term regret induced by augmented exponential learning and a random sampling transmit policy (Figs 1(a) and 1(b) respectively)

for different users (see text for details). In tune with Theorem 1, AXL quickly falls below the no-regret threshold whereas the randomized policy

(29) leads to positive regret for several users (in both figures the dashed “worst-case regret” curve represents the regret guarantee (22) of the AXL

algorithm).
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(a) Performance of AXL with average user velocity v = 5 km/s.
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(b) Performance of AXL with average user velocity v = 15 km/s.

Fig. 2. Data rates achieved by AXL in a changing environment with different fading velocities: the dynamic transmit policy induced by the AXL

algorithm allows users to track their maximum achievable transmission rate remarkably well even under rapidly changing channel conditions.

VI. Conclusions

In this paper, we introduced an adaptive transmit policy for MIMO-OFDM cognitive radio systems that evolve

dynamically over time as a function of changing user and environmental conditions. Drawing on the method of matrix
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Fig. 3. Convergence and robustness of AXL with imperfect CSI in a MIMO MAC system with 10 PUs and 25 SUs: in contrast to water-filling

methods, AXL attains the channel’s sum capacity even in the presence of very high measurement errors.

exponential learning [22] and online mirror descent [18, 23], we derived an augmented exponential learning (AXL)

scheme which leads to no regret: for every SU, the proposed transmit policy performs asymptotically as well as the

best fixed transmit profile over the entire transmission horizon, and irrespective of how the system evolves over time. In

fact, this learning scheme is closely aligned to the direction of change of the users’ data rate function, so the system’s

SUs are able to track their individual optimum transmit profile even under rapidly changing conditions. Importantly,

the implementation of the proposed algorithm requires only local CSI; moreover, the algorithm retaints its no-regret

properties even in the case of imperfect CSI (with arbitrarily large measurement errors) and significantly outperforms

classical water-filling algorithms (where the use of perfect CSI is critical).

To a large extent, our dynamic transmit policy owes its no-regret properties to an associated entropy function (for

instance, the von Neumann quantum entropy for the problem’s signal covariance component). As a result, by choosing

a proper entropy-like kernel (e.g. as in [36]), we can examine significantly more general situations, including for

example pricing and/or energy-awareness constraints.

Finally, we should mention here that when the environment undergoes rapid changes, there are other regret notions

which are more suited to adaptability (such as the adaptive regret measure of [28]). Studying the performance of

augmented exponential learning with respect to different regret valuations lies beyond the scope of the current paper,

but we intend to explore this direction in future work.

Appendix

Technical Proofs

Our proof approach relies on a technique introduced by Sorin [39] and recently extended by J. Kwon and one of

the authors to more general online mirror descent methods [35]. First, we will establish the no-regret property of

augmented exponential learning in continuous time; subsequently, we derive the corresponding discrete-time result by

estimating the difference between the continuous- and discrete-time processes.
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A. Online Power Allocation: the Case Pk ≥ P.

To begin with, note that the exponential mapping of (XL-PA) may be characterized as the solution of the convex

program:
maximize 〈y|q〉 − h(q),

subject to qk ≥ 0,
∑

k

qk = 1,
(31)

where 〈y|q〉 denotes the bilinear pairing 〈y|q〉 =
∑

k qkyk and h(q) =
∑

k qk log qk denotes the Gibbs–Shannon entropy

on the simplex ∆ ≡ ∆(K) spanned by K. More precisely, we have the following classical result [40, Chapter 25]:

Lemma 1. For every y ∈ RK , the problem (31) admits the unique solution G(y) with Gk(y) = eyk
/∑

` ey` .

Consider now the following continuous-time variant of (XL-PA) for t ≥ 0:

ẏk =
∂Φ

∂qk
,

q(t) = G (γ(t)y(t)) ,
(32)

where γ(t) = min{η, ηt−1/2}; moreover, define the cumulative continuous-time regret with respect to some fixed q0 ∈ ∆

as

Regc
T (q0) =

∫ T

0

[
Φ(q0; t) − Φ(q(t); t)

]
dt, (33)

where Φ(·; t), is a piecewise continuous stream of rate functions and the index c in Regc
T indicates that we are working

in continuous time. We then have:

Proposition 4. The cumulative regret generated by the learning scheme (32) satisfies Regc
T (q0) ≤ η−1 log K ·

√
T for

all q0 ∈ ∆.

Proof: Let h∗(y) denote the convex conjugate of h, i.e. h∗(y) = maxq∈∆{〈y|q〉 − h(q)} = 〈y|G(y)〉 − h(G(y)).

Moreover, set γ(t) = min{ηt−1/2, η} and let q(t) be defined as in (32) with v(t) = ẏ(t) = ∇q(t)Φ(q(t); t). By Lemma 1,

we will have h∗(γy) = log
∑
` eγy` and hence:

d
dt

h∗(γy) =
∑
k∈K

∂h∗

∂yk

∣∣∣∣∣
γy

(γ̇yk + γẏk) = γ̇ 〈y|q〉 + γ 〈v|q〉 , (34)

where we used (32) and the fact that ∇yh∗(y) = G(y). By isolating 〈v|q〉 and integrating by parts, we then get:∫ T

0
〈v|q〉 dt =

h∗(γ(T )y(T ))
γ(T )

−
h∗(γ(0)y(0))

γ(0)
+

∫ T

0

γ̇

γ2 h∗(γy) dt −
∫ T

0

γ̇

γ
〈y|q〉 dt

=
h∗(γ(T )y(T ))

γ(T )
−

h∗(0)
γ(0)

−

∫ T

0

γ̇

γ2 h(G(γy)) dt, (35)

where the last step follows from the fact that q = G(γy) and the defining relation h∗(γy) = 〈γy|G(γy)〉 − h(G(γy)).

Then, given that the minimum of h over ∆ is − log K, we also have h∗(0) = −hmin = log K; thus, with γ̇ ≤ 0, (35)
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becomes: ∫ T

0
〈v|q〉 dt ≥

h∗(γ(T )y(T ))
γ(T )

−
h∗(0)
γ(0)

+ h∗(0)
∫ T

0

γ̇

γ2 dt

≥
〈γ(T )y(T )|q0〉 − h(q0)

γ(T )
−

log K
γ(T )

≥ 〈y(T )|q0〉 −
log K
η

√
T , (36)

where we used the fact that h∗(γy) ≥ 〈γy|q0〉 − h(q0) for all q0 ∈ ∆ in the second line and that h ≤ 0 in the last step.

With Φ concave over ∆, we will also have Φ(q0; t) − Φ(q(t); t) ≤
〈
∇q(t)Φ

∣∣∣q0 − q(t)
〉

= 〈v(t)|q0 − q(t)〉; hence, by (36),

we get:

Regc
T (q0) ≤

∫ T

0
〈v|q0 − q〉 dt ≤

log K
η

√
T , (37)

and our proof is complete.

B. Online Power Allocation: The General Case.

If Pk < P for some k, we still obtain a no-regret power allocation policy if we use the modified entropy function

h(p) =
∑

k
(
pk log pk + (Pk − pk) log(Pk − pk)

)
, and define the modified Gibbs map:

G0(y) = arg max
p∈X0

{
〈y|p〉 − h0(p)

}
. (38)

Specifically, consider the following modified version of (32):

ẏk =
∂Φ

∂pk
,

p(t) = G0 (γ(t)y(t)) ,
(39)

where Φ(·; t) is a continuous stream of rate functions of the form (5) and γ = min{η, ηt−1/2}. We then have:

Proposition 5. The learning scheme (39) leads to no regret in continuous time: Regc
T (p0) ≤ O(

√
T ) for all p0 ∈ X0.

Proof: As in the proof of Proposition 4, let h∗0(y) = maxp∈X0 {〈y|p〉 − h0(p)} = 〈y|G0(y)〉 − h0(G0(y)) be the

convex conjugate of h0(p). Since the derivative of h0 blows up to infinity at the boundary of X0, the unique solution

to the maximization problem defining G0 lies at the interior of X0. The Karush–Kuhn–Tucker (KKT) conditions

thus give yk −
∂h0
∂pk

= λ, where λ is the Lagrange multiplier for the equality constraint
∑
` p` = P. We will then

also have ∂h∗0
∂yk

= G0,k(y) +
∑K
`=1 y`

∂
∂yk

G0,`(y) −
∑K
`=1

∂h0
∂p`

∂
∂yk

G0,`(y) = G0,k(y), where, in the last step, we used the fact

that
∑K
`=1 G0,`(y) = P (so

∑K
`=1 ∂ykG0,` = 0 for all k). Thus, letting v(t) = ∇pΦ(p; t) so that y(t) =

∫ t
0 v(s) ds and

p(t) = G0(γ(t)y(t)), we obtain the basic identity:

d
dt

h∗0(γy) =
∑
k∈K

∂h∗0
∂yk

∣∣∣∣∣∣
γy

(γ̇yk + γẏk) = γ̇ 〈y|p〉 + γ 〈v|p〉 , (40)

and the rest of the proof follows as in the case of Prop. 4.
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C. Online Signal Covariance Optimization

For the MIMO component (OCOV) of (ORM) we will consider the continuous-time scheme:

Ẏk =
∂Φ

∂Q∗k
,

Qk =
exp(γYk)

tr
[
exp (γYk)

] . (41)

where, as before, γ = min{η, ηt−1/2}. Then, with the user’s regret defined as in (33), we get:

Proposition 6. The cumulative regret generated by the continuous-time learning scheme (41) satisfies Regc
T (Q0) ≤

η−1
√

T
∑K

k=1 log mk for all Q0 ∈ X+ ≡
∏K

k=1 Dk.

To prove Proposition 6, we first show that the matrix exponential of (21) solves the semidefinite problem:

maximize tr
[
YQ

]
− h+(Q),

subject to Q < 0, tr(Q) = 1,
(42)

where Y is a Hermitian matrix and h+(Q) = tr
[
Q log Q

]
is the von Neumann entropy. Indeed:

Lemma 2. For every Hermitian matrix Y ∈ Cm×m, the problem (31) admits the unique solution QY = exp(Y)
/

tr
[
exp(Y)

]
.

Accordingly, the convex conjugate h∗+ of h+ is:

h∗+(Y) = maxQ∈D
{
tr

[
YQ

]
− h+(Q)

}
= log tr

[
exp(Y)

]
. (43)

Proof: To begin with, let A(Y,Q) = tr
[
YQ] − h+(Q) denote the objective of the problem (42), and let Z =

{A ∈ Cm×m : A† = A, tr(A) = 0} be the space of tangent directions to D. Then, if {q j,u j}
m
j=1 is an eigen-decompo-

sition of Q + tZ for Q ∈ D◦ and Z ∈ Z, we will have A(Y,Q + tZ) = tr[YQ] + tr[YZ] t −
∑

j q j log q j. Hence, the

directional derivative of A(Y,Q) along Z at Q is ∇ZA(Y,Q) = d
dt

∣∣∣
t=0 A(Y,Q + tZ) = tr[YZ] −

∑K
k=1 q̇k log qk where

we have used the fact that
∑

j q̇ j = 0 (recall that
∑

j q j = tr(Q + tZ) = 1 for all t such that Q + tZ ∈ D◦). However,

differentiating the defining relation (Q + tZ)u j = q ju j with respect to t gives Zu j + (Q + tZ)u̇ j = q̇ ju j + q ju̇ j, so,

after multiplying from the left by u†j , we get q̇ j = u†jZu j + u†j (Q + tZ)u̇ j − q ju†j u̇ j = u†jZu j. Summing over j gives∑
j q̇ j log q j =

∑
j u†jZu j log q j = tr[Z log Q]; then, by substituting in the previous expression for ∇ZA(Y,Q), we

finally obtain ∇ZA(Y,Q) = tr[Z(Y − log Q)].

By standard convex-analytic arguments, it follows that (42) admits a unique solution QY at the interior D◦ of D

[40, Chapter 26]. Accordingly, by the KKT conditions for (42), we have ∇ZA(Y,QY) = 0 for all tangent directions Z

to D◦ at QY, i.e. tr[Z(Y − log QY)] = 0 for all Hermitian Z ∈ Cm×m such that tr(Z) = 0. From this last condition, we

immediately get Y − log QY ∝ I, and with tr(QY) = 1, we obtain QY = exp(Y)/ tr[exp(Y)]; the expression for h∗+(Y)

then follows by substituting QY in the definition of A(Y,Q).

Armed with this characterization, we now get:

Proof of Proposition 6: Let hk(Qk) = tr(Qk log Qk), Qk ∈ Dk, so h∗k(Yk) = log tr[exp(Yk)] by Lemma 2;

moreover, let Q = diag(Q1, . . . ,QK) and set h+(Q) =
∑

k hk(Qk) = tr
[
Q log Q

]
for Q ∈ X+ ≡

∏
k Dk. Then,



21

if Y = diag(Y1, . . . ,YK) with Yk Hermitian, we will have h∗+(Y) = maxQ∈X+

{
tr

[
YQ

]
− h(Q)

}
=

∑
k h∗k(Yk) =∑

k log tr
[
exp(Yk)

]
. Accordingly, if we let Vk(t) = ∂Q∗k Φ(Q; t), we get:

d
dt

h∗+(γY) =
∑K

k=1
tr

[
exp(γYk)

]−1 d
dt

tr
[
exp(γYk)

]
=

∑K

k=1
tr

[
exp(γYk)

]−1 tr
[(
γ̇Yk + γẎk

)
exp(Yk)

]
= γ̇ tr

[
YQ

]
+ γ tr

[
VQ

]
(44)

where we set V = diag(V1, . . . ,VK). Following the same steps as in the proof of Proposition 4, we then obtain:∫ T

0
tr

[
VQ

]
dt =

h∗+(γ(T )Y(T ))
γ(T )

−
h∗+(0)
γ(0)

−

∫ T

0

γ̇

γ2 h+(Q) dt, (45)

The minimum of h+ over X+ =
∏

k Dk is just −
∑

k log mk, so we also have h∗(0) = −minQ∈X+
h+(Q) =

∑
k log mk;

then, with γ̇ ≤ 0, (45) becomes:

∫ T

0
tr

[
VQ

]
dt ≥

h∗+(γ(T )Y(T ))
γ(T )

−
h∗(0)
γ(0)

+ h∗+(0)
∫ T

0

γ̇

γ2 dt

≥
tr

[
γ(T )Y(T )Q0

]
− h+(Q0)

γ(T )
−

∑K
k=1 log mk

γ(T )

≥ tr
[
Y(T )Q0

]
−

∑K
k=1 log mk

η

√
T , (46)

where we used the fact that h∗+(γY) ≥ tr
[
γYQ0

]
− h+(Q0) for all Q0 ∈ X+ in the second line and the fact that h+ ≤ 0

in the last step. Since Φ is concave in Q and V = ∇Q∗Φ, the rest of the proof follows in the same way as that of

Proposition 4.

D. The Full MIMO–OFDM Problem

Our final step in this continuous-time setting will be to establish the no-regret properties of the following continuous-

time variant of the AXL algorithm for Pk ≥ P:

ẏk =
∂Φ

∂qk
, Ẏk =

∂Φ

∂Q∗k
,

qk =
exp(γyk)∑K
`=1 exp(γy`)

, Qk =
exp(γYk)

tr
[
exp(γYk)

] , (47)

with γ = min{η, ηt−1/2} as usual. Without further ado, we have:

Proposition 7. If Pk ≥ P for all k ∈ K, then, for all P0 ∈ X, the cumulative regret generated by (47) will satisfy

Regc
T (P0) ≤ η−1

√
T

(
log K +

∑K
k=1 log mk

)
.

Proof: Recall that any P ∈ X may be decomposed as P = diag(p1Q1, . . . , pKQK) with p = (p1, . . . , pK) ∈ X0 and

Q = diag(Q1, . . . ,QK) ∈ X+ ≡
∏

k Dk. Then, using the normalized power allocation vector q = p/P ∈ ∆ for conve-

nience, let H(q,Q) = h(q) + h+(Q) =
∑K

k=1
[
qk log qk + tr(Qk log Qk)

]
and consider the associated Legendre–Fenchel
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problem:
maximize 〈y|q〉 + tr[YQ] − H(q,Q),

subject to q ∈ ∆, Q ∈
∏

k
Dk.

(48)

Clearly, (48) may be decomposed as a sum of (31) and (42), so each component of the solution of (48) is given by

Lemmas 1 and 2 respectively; likewise, the convex conjugate of H will be H∗(y,Y) = h∗(y) + h∗+(Y), with h∗ and h∗+

defined as before. Our claim is then obtained by following the same steps as in the proofs of Propositions 4 and 6.

E. The Descent to Discrete Time

In this appendix, we to derive the no-regret properties of the discrete-time policies (XL-PA), (XL-COV) and of the

AXL algorithm (Propositions 1, 3 and Theorem 1 respectively) by means of a comparison technique introduced by

Sorin [39] and developed further by J. Kwon and one of the authors [35]. Specifically, we have:

Lemma 3. Let C be a compact convex set in RN , let v(t) be a sequence of payoff vectors in RN with ‖v(t)‖ ≤ V in the

uniform norm of RN (t = 1, 2 . . . ), and consider the sequence of play x(t + 1) = Q
(
ηt−1/2 ∑t

s=1 v(s)
)

where Q : RN → C

is C-Lipschitz with respect to the L1 norm on C. Moreover, letting vc(t) = v(dte) be a piecewise constant interpolation

of v(t) for t ∈ [1,+∞), consider the continuous-time process xc(t) = Q
(
γ(t)

∫ t
0 vc(s) ds

)
with γ(t) = min{ηt−1/2, η}, and

assume that it guarantees the regret bound:∫ T

0
〈vc(t)|x0 − xc(t)〉 dt ≤ R(T )

√
T for all x0 ∈ X+. (49)

Then, for all x0 ∈ A, the discrete-time sequence x(t) guarantees∑T

t=1
〈v(t)|x0 − x(t)〉 ≤

√
T

(
R(T ) + 4CV2η

)
. (50)

Proof: By assumption, if we set y(t) =
∫ t

0 vc(s) ds, we have xc(t) = Q(γ(t)y(t)) = x(t + 1) whenever t is a

positive integer. Hence, for every integer T ≥ 1, we have
∫ T

0 〈v
c(t)|xc(t)〉 dt −

∑T
t=1 〈v(t)|x(t)〉 =

∫ T
0 〈v

c(t)|xc(t)〉 dt −∫ T
0 〈v(dte)|x(dte)〉 dt =

∫ T
0 〈v

c(t)|xc(t) − xc(btc)〉 dt where we used the fact that xc(btc) = x(dte) in the second step. On

the other hand, Hölder’s inequality gives |〈vc(t)|xc(t) − xc(btc)〉| ≤ ‖vc(t)‖∞ · ‖xc(t) − xc(btc)‖1 ≤ V ‖xc(t) − xc(btc)‖1 ≤

V ‖Q(γ(t)y(t)) − Q(γ(btc)y(btc))‖1 ≤ CV ‖γ(t)y(t) − γ(btc)y(btc)‖∞. The last term may then be rewritten as:

‖γ(t)y(t) − γ(btc)y(btc)‖∞ =

∥∥∥∥∥∥
∫ t

btc

d
ds

(γ(s)y(s)) ds

∥∥∥∥∥∥
1

(51)

≤

∫ t

btc

∥∥∥∥∥γ(s)vc(s) + γ̇(s)
∫ s

0
vc(w) dw

∥∥∥∥∥
∞

ds ≤ V
∫ t

btc
(γ(s) − sγ̇(s)) ds. (52)

Recalling that γ(t) = min{η, ηt−1/2}, this last integral is equal to ηt if t ∈ [0, 1] and 3η
(
t1/2 − btc1/2

)
otherwise. Thus,

combining the above inequalities, we obtain:∫ T

0
〈vc(t)|xc(t) − xc(btc)〉 dt ≤ CV2

∫ T

0

∫ t

btc
(γ(s) − sγ̇(s)) ds dt (53)

≤ CV2η

1
2

+ 3
T−1∑
k=1

∫ k+1

k

t − k
√

t +
√

k
dt

 ≤ 4CV2η
√

T . (54)
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Hence, by the definition of vc(t), we finally obtain

∑T

t=1
〈v(t)|x0 − x(t)〉 =

∫ T

0
〈vc(t)|x0 − xc(t)〉 dt +

∫ T

0
〈vc(t)|xc(t) − xc(btc)〉 dt ≤ R(T )

√
T + 4CV2η

√
T ,

which completes our proof.

With this comparison at hand, the analysis of the previous sections yields:

Proof of Proposition 1: Note first that vk = ∂Φ
∂qk

= P tr
[
MkQk

]
, so the payoff vectors v of (16) are bounded in

the uniform norm of RK by PM – cf. (12). Given that the Lipschitz constant of the exponential mapping G(y) of (1) is

C = 1 [18], the proposition follows by combining the continuous-time bound of Proposition 4 with Lemma 3.

Proof of Proposition 2: Note first that the modified Gibbs map of (38) simply represents the power allocation

policy of (XL-PA′): indeed, by the KKT conditions for the maximization problem defining G0, we will have:

pk

Pk − pk
= eλ−yk =⇒ pk = Pk

eyk

eλ + eyk
, (55)

so, given that the power vector p satisfies the total power constraint (7a), the Lagrange multiplier λ must satisfy the

condition P =
∑

k pk =
∑

k Pk(1 + eλ−yk )−1. Comparing this last equation with (18), we conclude that pk will be given

by the power update step of (XL-PA′) with y replaced by γy, so our claim follows by combining Proposition 5 with

Lemma 3.

Proof of Proposition 3: The matrix payoffs Vk = ∂Φ
∂Q∗k

= pkMk satify ‖Vk‖ ≤ PM by (12). Moreover, the von

Neumann entropy h+ is 1-strongly convex with respect to the L1 norm, so the matrix exponential mapping Y 7→ QY =

exp(Y)
/

tr
[
exp(Y)

]
is 1-Lipschitz – see e.g. [23]. Our claim then follows by combining the continuous-time bound of

Proposition 6 with Lemma 3.

Proof of Theorem 1: As in the proofs of Propositions 1 and 3, the map (y,Y) 7→ (q,Q) ∈ ∆ ×
∏

k Dk of (47)

is 1-Lipschitz and the payoffs (v,Vk) are bounded by PM in the uniform norm of RK ×
∏

k Cmk×mk . The theorem then

follows by combining the continuous-time bound of Proposition 7 with Lemma 3.

F. Learning with Imperfect CSI

Proof of Theorem 2: Let P(t) = diag (P1(t), . . . ,Pk(t)) ∈ X be the sequence of transmit profiles generated by the

AXL algorithm with noisy observations M̂ = M + Ξ. Then, for every P0 ∈ X, we have:

RegT (P0) ≤
∑T

t=1
tr

[
∇Φ(P(t)) ·

(
P0 − P(t)

)]
=

∑T

t=1
tr

[
M̂(t) ·

(
P0 − P(t)

)]
−

∑T

t=1
tr

[
Ξ(t) ·

(
P0 − P(t)

)]
, (56)

where the inequality follows from the concavity of Φ. Since P(t) is generated by the sequence of matrix payoffs M̂(t),

the first term of this expression is simply the regret generated by P(t) against M̂(t), so we have∑T

t=1
tr

[
M̂(t) ·

(
P0 − P(t)

)]
≤ R
√

T (57)

by Theorem 1 (or, more accurately, by combining (36) and (46) with Lemma 3).

As for the second term, it is easy to see that the process V(t) = tr
[
Ξ(t) ·

(
P(t) − P0

)]
is a martingale difference:

indeed, since P(t) is fully determined by M̂(1), . . . , M̂(t − 1), we get E[V(t)|Ft−1] = E
[
tr

[
Ξ(t) ·

(
P(t) − P0

)]
|Ft−1

]
=
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tr
[
E

[
Ξ(t)|Ft−1

]
·
(
P(t) − P0

)]
= 0. Moreover, with ‖Ξ‖ ≤ Σ, we will also have |V(t)| ≤ ‖Ξ(t)‖ · ‖P0 − P(t)‖1 ≤ Σ · D,

where D = max{‖P0 − P‖1 : P0,P ∈ X} denotes the L1-diameter of X.

The bound (26) is thus obtained by taking the expectation of RegT (P0) and using the zero-mean property of V .

Similarly, the fact that P(t) generates no regret almost surely (and not only in expectation) follows by noting that

T−1 ∑T
t=1 V(t)→ 0 as a consequence of the strong law of large numbers for martingale differences [41, Theorem 2.18].

Finally, for the large deviations bounds (27), (56) yields:

P

(
1
T

RegT (P0) ≥
R
√

T
+ z

)
≤ P

(∑T

t=1
|V(t)| ≥ Tz

)
. (58)

However, with ‖Ξ‖ ≤ Σ, Azuma’s inequality [42] yields P
(∑T

t=1 V(t) ≥ Tz
)
≤ exp

(
− T 2z2

2
∑T

t=1 ess sup |V(t)|2

)
≤ exp

(
− Tz2

2Σ2D2

)
,

and our claim follows.
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