16,636 research outputs found

    Optimal Sensor Collaboration for Parameter Tracking Using Energy Harvesting Sensors

    Full text link
    In this paper, we design an optimal sensor collaboration strategy among neighboring nodes while tracking a time-varying parameter using wireless sensor networks in the presence of imperfect communication channels. The sensor network is assumed to be self-powered, where sensors are equipped with energy harvesters that replenish energy from the environment. In order to minimize the mean square estimation error of parameter tracking, we propose an online sensor collaboration policy subject to real-time energy harvesting constraints. The proposed energy allocation strategy is computationally light and only relies on the second-order statistics of the system parameters. For this, we first consider an offline non-convex optimization problem, which is solved exactly using semidefinite programming. Based on the offline solution, we design an online power allocation policy that requires minimal online computation and satisfies the dynamics of energy flow at each sensor. We prove that the proposed online policy is asymptotically equivalent to the optimal offline solution and show its convergence rate and robustness. We empirically show that the estimation performance of the proposed online scheme is better than that of the online scheme when channel state information about the dynamical system is available in the low SNR regime. Numerical results are conducted to demonstrate the effectiveness of our approach

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    A Learning Theoretic Approach to Energy Harvesting Communication System Optimization

    Full text link
    A point-to-point wireless communication system in which the transmitter is equipped with an energy harvesting device and a rechargeable battery, is studied. Both the energy and the data arrivals at the transmitter are modeled as Markov processes. Delay-limited communication is considered assuming that the underlying channel is block fading with memory, and the instantaneous channel state information is available at both the transmitter and the receiver. The expected total transmitted data during the transmitter's activation time is maximized under three different sets of assumptions regarding the information available at the transmitter about the underlying stochastic processes. A learning theoretic approach is introduced, which does not assume any a priori information on the Markov processes governing the communication system. In addition, online and offline optimization problems are studied for the same setting. Full statistical knowledge and causal information on the realizations of the underlying stochastic processes are assumed in the online optimization problem, while the offline optimization problem assumes non-causal knowledge of the realizations in advance. Comparing the optimal solutions in all three frameworks, the performance loss due to the lack of the transmitter's information regarding the behaviors of the underlying Markov processes is quantified

    Proactive Location-Based Scheduling of Delay-Constrained Traffic Over Fading Channels

    Full text link
    In this paper, proactive resource allocation based on user location for point-to-point communication over fading channels is introduced, whereby the source must transmit a packet when the user requests it within a deadline of a single time slot. We introduce a prediction model in which the source predicts the request arrival TpT_p slots ahead, where TpT_p denotes the prediction window (PW) size. The source allocates energy to transmit some bits proactively for each time slot of the PW with the objective of reducing the transmission energy over the non-predictive case. The requests are predicted based on the user location utilizing the prior statistics about the user requests at each location. We also assume that the prediction is not perfect. We propose proactive scheduling policies to minimize the expected energy consumption required to transmit the requested packets under two different assumptions on the channel state information at the source. In the first scenario, offline scheduling, we assume the channel states are known a-priori at the source at the beginning of the PW. In the second scenario, online scheduling, it is assumed that the source has causal knowledge of the channel state. Numerical results are presented showing the gains achieved by using proactive scheduling policies compared with classical (reactive) networks. Simulation results also show that increasing the PW size leads to a significant reduction in the consumed transmission energy even with imperfect prediction.Comment: Conference: VTC2016-Fall, At Montreal-Canad
    corecore