342 research outputs found

    Reactive Stepping for Humanoid Robots using Reinforcement Learning: Application to Standing Push Recovery on the Exoskeleton Atalante

    Full text link
    State-of-the-art reinforcement learning is now able to learn versatile locomotion, balancing and push-recovery capabilities for bipedal robots in simulation. Yet, the reality gap has mostly been overlooked and the simulated results hardly transfer to real hardware. Either it is unsuccessful in practice because the physics is over-simplified and hardware limitations are ignored, or regularity is not guaranteed, and unexpected hazardous motions can occur. This paper presents a reinforcement learning framework capable of learning robust standing push recovery for bipedal robots that smoothly transfer to reality, providing only instantaneous proprioceptive observations. By combining original termination conditions and policy smoothness conditioning, we achieve stable learning, sim-to-real transfer and safety using a policy without memory nor explicit history. Reward engineering is then used to give insights into how to keep balance. We demonstrate its performance in reality on the lower-limb medical exoskeleton Atalante

    Analytic and Learned Footstep Control for Robust Bipedal Walking

    Get PDF
    Bipedal walking is a complex, balance-critical whole-body motion with inherently unstable inverted pendulum-like dynamics. Strong disturbances must be quickly responded to by altering the walking motion and placing the next step in the right place at the right time. Unfortunately, the high number of degrees of freedom of the humanoid body makes the fast computation of well-placed steps a particularly challenging task. Sensor noise, imprecise actuation, and latency in the sensomotoric feedback loop impose further challenges when controlling real hardware. This dissertation addresses these challenges and describes a method of generating a robust walking motion for bipedal robots. Fast modification of footstep placement and timing allows agile control of the walking velocity and the absorption of strong disturbances. In a divide and conquer manner, the concepts of motion and balance are solved separately from each other, and consolidated in a way that a low-dimensional balance controller controls the timing and the footstep locations of a high-dimensional motion generator. Central pattern generated oscillatory motion signals are used for the synthesis of an open-loop stable walk on flat ground, which lacks the ability to respond to disturbances due to the absence of feedback. The Central Pattern Generator exhibits a low-dimensional parameter set to influence the timing and the landing coordinates of the swing foot. For balance control, a simple inverted pendulum-based physical model is used to represent the principal dynamics of walking. The model is robust to disturbances in a way that it returns to an ideal trajectory from a wide range of initial conditions by employing a combination of Zero Moment Point control, step timing, and foot placement strategies. The simulation of the model and its controller output are computed efficiently in closed form, supporting high-frequency balance control at the cost of an insignificant computational load. Additionally, the sagittal step size produced by the controller can be trained online during walking with a novel, gradient descent-based machine learning method. While the analytic controller forms the core of reliable walking, the trained sagittal step size complements the analytic controller in order to improve the overall walking performance. The balanced whole-body walking motion arises by using the footstep coordinates and the step timing predicted by the low-dimensional model as control input for the Central Pattern Generator. Real robot experiments are presented as evidence for disturbance-resistant, omnidirectional gait control, with arguably the strongest push-recovery capabilities to date

    Learning-based methods for planning and control of humanoid robots

    Get PDF
    Nowadays, humans and robots are more and more likely to coexist as time goes by. The anthropomorphic nature of humanoid robots facilitates physical human-robot interaction, and makes social human-robot interaction more natural. Moreover, it makes humanoids ideal candidates for many applications related to tasks and environments designed for humans. No matter the application, an ubiquitous requirement for the humanoid is to possess proper locomotion skills. Despite long-lasting research, humanoid locomotion is still far from being a trivial task. A common approach to address humanoid locomotion consists in decomposing its complexity by means of a model-based hierarchical control architecture. To cope with computational constraints, simplified models for the humanoid are employed in some of the architectural layers. At the same time, the redundancy of the humanoid with respect to the locomotion task as well as the closeness of such a task to human locomotion suggest a data-driven approach to learn it directly from experience. This thesis investigates the application of learning-based techniques to planning and control of humanoid locomotion. In particular, both deep reinforcement learning and deep supervised learning are considered to address humanoid locomotion tasks in a crescendo of complexity. First, we employ deep reinforcement learning to study the spontaneous emergence of balancing and push recovery strategies for the humanoid, which represent essential prerequisites for more complex locomotion tasks. Then, by making use of motion capture data collected from human subjects, we employ deep supervised learning to shape the robot walking trajectories towards an improved human-likeness. The proposed approaches are validated on real and simulated humanoid robots. Specifically, on two versions of the iCub humanoid: iCub v2.7 and iCub v3
    corecore