2,532 research outputs found

    Graph Signal Processing: Overview, Challenges and Applications

    Full text link
    Research in Graph Signal Processing (GSP) aims to develop tools for processing data defined on irregular graph domains. In this paper we first provide an overview of core ideas in GSP and their connection to conventional digital signal processing. We then summarize recent developments in developing basic GSP tools, including methods for sampling, filtering or graph learning. Next, we review progress in several application areas using GSP, including processing and analysis of sensor network data, biological data, and applications to image processing and machine learning. We finish by providing a brief historical perspective to highlight how concepts recently developed in GSP build on top of prior research in other areas.Comment: To appear, Proceedings of the IEE

    Graph Filters for Signal Processing and Machine Learning on Graphs

    Full text link
    Filters are fundamental in extracting information from data. For time series and image data that reside on Euclidean domains, filters are the crux of many signal processing and machine learning techniques, including convolutional neural networks. Increasingly, modern data also reside on networks and other irregular domains whose structure is better captured by a graph. To process and learn from such data, graph filters account for the structure of the underlying data domain. In this article, we provide a comprehensive overview of graph filters, including the different filtering categories, design strategies for each type, and trade-offs between different types of graph filters. We discuss how to extend graph filters into filter banks and graph neural networks to enhance the representational power; that is, to model a broader variety of signal classes, data patterns, and relationships. We also showcase the fundamental role of graph filters in signal processing and machine learning applications. Our aim is that this article provides a unifying framework for both beginner and experienced researchers, as well as a common understanding that promotes collaborations at the intersections of signal processing, machine learning, and application domains

    Optimization and Applications of Modern Wireless Networks and Symmetry

    Get PDF
    Due to the future demands of wireless communications, this book focuses on channel coding, multi-access, network protocol, and the related techniques for IoT/5G. Channel coding is widely used to enhance reliability and spectral efficiency. In particular, low-density parity check (LDPC) codes and polar codes are optimized for next wireless standard. Moreover, advanced network protocol is developed to improve wireless throughput. This invokes a great deal of attention on modern communications

    A Survey of Graph-based Deep Learning for Anomaly Detection in Distributed Systems

    Full text link
    Anomaly detection is a crucial task in complex distributed systems. A thorough understanding of the requirements and challenges of anomaly detection is pivotal to the security of such systems, especially for real-world deployment. While there are many works and application domains that deal with this problem, few have attempted to provide an in-depth look at such systems. In this survey, we explore the potentials of graph-based algorithms to identify anomalies in distributed systems. These systems can be heterogeneous or homogeneous, which can result in distinct requirements. One of our objectives is to provide an in-depth look at graph-based approaches to conceptually analyze their capability to handle real-world challenges such as heterogeneity and dynamic structure. This study gives an overview of the State-of-the-Art (SotA) research articles in the field and compare and contrast their characteristics. To facilitate a more comprehensive understanding, we present three systems with varying abstractions as use cases. We examine the specific challenges involved in anomaly detection within such systems. Subsequently, we elucidate the efficacy of graphs in such systems and explicate their advantages. We then delve into the SotA methods and highlight their strength and weaknesses, pointing out the areas for possible improvements and future works.Comment: The first two authors (A. Danesh Pazho and G. Alinezhad Noghre) have equal contribution. The article is accepted by IEEE Transactions on Knowledge and Data Engineerin
    • 

    corecore