1,307 research outputs found

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved

    Robust Scene Estimation for Goal-directed Robotic Manipulation in Unstructured Environments

    Full text link
    To make autonomous robots "taskable" so that they function properly and interact fluently with human partners, they must be able to perceive and understand the semantic aspects of their environments. More specifically, they must know what objects exist and where they are in the unstructured human world. Progresses in robot perception, especially in deep learning, have greatly improved for detecting and localizing objects. However, it still remains a challenge for robots to perform a highly reliable scene estimation in unstructured environments that is determined by robustness, adaptability and scale. In this dissertation, we address the scene estimation problem under uncertainty, especially in unstructured environments. We enable robots to build a reliable object-oriented representation that describes objects present in the environment, as well as inter-object spatial relations. Specifically, we focus on addressing following challenges for reliable scene estimation: 1) robust perception under uncertainty results from noisy sensors, objects in clutter and perceptual aliasing, 2) adaptable perception in adverse conditions by combined deep learning and probabilistic generative methods, 3) scalable perception as the number of objects grows and the structure of objects becomes more complex (e.g. objects in dense clutter). Towards realizing robust perception, our objective is to ground raw sensor observations into scene states while dealing with uncertainty from sensor measurements and actuator control . Scene states are represented as scene graphs, where scene graphs denote parameterized axiomatic statements that assert relationships between objects and their poses. To deal with the uncertainty, we present a pure generative approach, Axiomatic Scene Estimation (AxScEs). AxScEs estimates a probabilistic distribution across plausible scene graph hypotheses describing the configuration of objects. By maintaining a diverse set of possible states, the proposed approach demonstrates the robustness to the local minimum in the scene graph state space and effectiveness for manipulation-quality perception based on edit distance on scene graphs. To scale up to more unstructured scenarios and be adaptable to adversarial scenarios, we present Sequential Scene Understanding and Manipulation (SUM), which estimates the scene as a collection of objects in cluttered environments. SUM is a two-stage method that leverages the accuracy and efficiency from convolutional neural networks (CNNs) with probabilistic inference methods. Despite the strength from CNNs, they are opaque in understanding how the decisions are made and fragile for generalizing beyond overfit training samples in adverse conditions (e.g., changes in illumination). The probabilistic generative method complements these weaknesses and provides an avenue for adaptable perception. To scale up to densely cluttered environments where objects are physically touching with severe occlusions, we present GeoFusion, which fuses noisy observations from multiple frames by exploring geometric consistency at object level. Geometric consistency characterizes geometric compatibility between objects and geometric similarity between observations and objects. It reasons about geometry at the object-level, offering a fast and reliable way to be robust to semantic perceptual aliasing. The proposed approach demonstrates greater robustness and accuracy than the state-of-the-art pose estimation approach.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163060/1/zsui_1.pd

    REPRESENTATION LEARNING FOR ACTION RECOGNITION

    Get PDF
    The objective of this research work is to develop discriminative representations for human actions. The motivation stems from the fact that there are many issues encountered while capturing actions in videos like intra-action variations (due to actors, viewpoints, and duration), inter-action similarity, background motion, and occlusion of actors. Hence, obtaining a representation which can address all the variations in the same action while maintaining discrimination with other actions is a challenging task. In literature, actions have been represented either using either low-level or high-level features. Low-level features describe the motion and appearance in small spatio-temporal volumes extracted from a video. Due to the limited space-time volume used for extracting low-level features, they are not able to account for viewpoint and actor variations or variable length actions. On the other hand, high-level features handle variations in actors, viewpoints, and duration but the resulting representation is often high-dimensional which introduces the curse of dimensionality. In this thesis, we propose new representations for describing actions by combining the advantages of both low-level and high-level features. Specifically, we investigate various linear and non-linear decomposition techniques to extract meaningful attributes in both high-level and low-level features. In the first approach, the sparsity of high-level feature descriptors is leveraged to build action-specific dictionaries. Each dictionary retains only the discriminative information for a particular action and hence reduces inter-action similarity. Then, a sparsity-based classification method is proposed to classify the low-rank representation of clips obtained using these dictionaries. We show that this representation based on dictionary learning improves the classification performance across actions. Also, a few of the actions consist of rapid body deformations that hinder the extraction of local features from body movements. Hence, we propose to use a dictionary which is trained on convolutional neural network (CNN) features of the human body in various poses to reliably identify actors from the background. Particularly, we demonstrate the efficacy of sparse representation in the identification of the human body under rapid and substantial deformation. In the first two approaches, sparsity-based representation is developed to improve discriminability using class-specific dictionaries that utilize action labels. However, developing an unsupervised representation of actions is more beneficial as it can be used to both recognize similar actions and localize actions. We propose to exploit inter-action similarity to train a universal attribute model (UAM) in order to learn action attributes (common and distinct) implicitly across all the actions. Using maximum aposteriori (MAP) adaptation, a high-dimensional super action-vector (SAV) for each clip is extracted. As this SAV contains redundant attributes of all other actions, we use factor analysis to extract a novel lowvi dimensional action-vector representation for each clip. Action-vectors are shown to suppress background motion and highlight actions of interest in both trimmed and untrimmed clips that contributes to action recognition without the help of any classifiers. It is observed during our experiments that action-vector cannot effectively discriminate between actions which are visually similar to each other. Hence, we subject action-vectors to supervised linear embedding using linear discriminant analysis (LDA) and probabilistic LDA (PLDA) to enforce discrimination. Particularly, we show that leveraging complimentary information across action-vectors using different local features followed by discriminative embedding provides the best classification performance. Further, we explore non-linear embedding of action-vectors using Siamese networks especially for fine-grained action recognition. A visualization of the hidden layer output in Siamese networks shows its ability to effectively separate visually similar actions. This leads to better classification performance than linear embedding on fine-grained action recognition. All of the above approaches are presented on large unconstrained datasets with hundreds of examples per action. However, actions in surveillance videos like snatch thefts are difficult to model because of the diverse variety of scenarios in which they occur and very few labeled examples. Hence, we propose to utilize the universal attribute model (UAM) trained on large action datasets to represent such actions. Specifically, we show that there are similarities between certain actions in the large datasets with snatch thefts which help in extracting a representation for snatch thefts using the attributes from the UAM. This representation is shown to be effective in distinguishing snatch thefts from regular actions with high accuracy.In summary, this thesis proposes both supervised and unsupervised approaches for representing actions which provide better discrimination than existing representations. The first approach presents a dictionary learning based sparse representation for effective discrimination of actions. Also, we propose a sparse representation for the human body based on dictionaries in order to recognize actions with rapid body deformations. In the next approach, a low-dimensional representation called action-vector for unsupervised action recognition is presented. Further, linear and non-linear embedding of action-vectors is proposed for addressing inter-action similarity and fine-grained action recognition, respectively. Finally, we propose a representation for locating snatch thefts among thousands of regular interactions in surveillance videos

    Calibration-free Pedestrian Partial Pose Estimation Using a High-mounted Kinect

    Get PDF
    Les applications de l’analyse du comportement humain ont subit de rapides développements durant les dernières décades, tant au niveau des systèmes de divertissements que pour des applications professionnelles comme les interfaces humain-machine, les systèmes d’assistance de conduite automobile ou des systèmes de protection des piétons. Cette thèse traite du problème de reconnaissance de piétons ainsi qu’à l’estimation de leur orientation en 3D. Cette estimation est faite dans l’optique que la connaissance de cette orientation est bénéfique tant au niveau de l’analyse que de la prédiction du comportement des piétons. De ce fait, cette thèse propose à la fois une nouvelle méthode pour détecter les piétons et une manière d’estimer leur orientation, par l’intégration séquentielle d’un module de détection et un module d’estimation d’orientation. Pour effectuer cette détection de piéton, nous avons conçu un classificateur en cascade qui génère automatiquement une boîte autour des piétons détectés dans l’image. Suivant cela, des régions sont extraites d’un nuage de points 3D afin de classifier l’orientation du torse du piéton. Cette classification se base sur une image synthétique grossière par tramage (rasterization) qui simule une caméra virtuelle placée immédiatement au-dessus du piéton détecté. Une machine à vecteurs de support effectue la classification à partir de cette image de synthèse, pour l’une des 10 orientations discrètes utilisées lors de l’entrainement (incréments de 30 degrés). Afin de valider les performances de notre approche d’estimation d’orientation, nous avons construit une base de données de référence contenant 764 nuages de points. Ces données furent capturées à l’aide d’une caméra Kinect de Microsoft pour 30 volontaires différents, et la vérité-terrain sur l’orientation fut établie par l’entremise d’un système de capture de mouvement Vicon. Finalement, nous avons démontré les améliorations apportées par notre approche. En particulier, nous pouvons détecter des piétons avec une précision de 95.29% et estimer l’orientation du corps (dans un intervalle de 30 degrés) avec une précision de 88.88%. Nous espérons ainsi que nos résultats de recherche puissent servir de point de départ à d’autres recherches futures.The application of human behavior analysis has undergone rapid development during the last decades from entertainment system to professional one, as Human Robot Interaction (HRI), Advanced Driver Assistance System (ADAS), Pedestrian Protection System (PPS), etc. Meanwhile, this thesis addresses the problem of recognizing pedestrians and estimating their body orientation in 3D based on the fact that estimating a person’s orientation is beneficial in determining their behavior. In this thesis, a new method is proposed for detecting and estimating the orientation, in which the result of a pedestrian detection module and a orientation estimation module are integrated sequentially. For the goal of pedestrian detection, a cascade classifier is designed to draw a bounding box around the detected pedestrian. Following this, extracted regions are given to a discrete orientation classifier to estimate pedestrian body’s orientation. This classification is based on a coarse, rasterized depth image simulating a top-view virtual camera, and uses a support vector machine classifier that was trained to distinguish 10 orientations (30 degrees increments). In order to test the performance of our approach, a new benchmark database contains 764 sets of point cloud for body-orientation classification was captured. For this benchmark, a Kinect recorded the point cloud of 30 participants and a marker-based motion capture system (Vicon) provided the ground truth on their orientation. Finally we demonstrated the improvements brought by our system, as it detected pedestrian with an accuracy of 95:29% and estimated the body orientation with an accuracy of 88:88%.We hope it can provide a new foundation for future researches

    Action recognition from RGB-D data

    Get PDF
    In recent years, action recognition based on RGB-D data has attracted increasing attention. Different from traditional 2D action recognition, RGB-D data contains extra depth and skeleton modalities. Different modalities have their own characteristics. This thesis presents seven novel methods to take advantages of the three modalities for action recognition. First, effective handcrafted features are designed and frequent pattern mining method is employed to mine the most discriminative, representative and nonredundant features for skeleton-based action recognition. Second, to take advantages of powerful Convolutional Neural Networks (ConvNets), it is proposed to represent spatio-temporal information carried in 3D skeleton sequences in three 2D images by encoding the joint trajectories and their dynamics into color distribution in the images, and ConvNets are adopted to learn the discriminative features for human action recognition. Third, for depth-based action recognition, three strategies of data augmentation are proposed to apply ConvNets to small training datasets. Forth, to take full advantage of the 3D structural information offered in the depth modality and its being insensitive to illumination variations, three simple, compact yet effective images-based representations are proposed and ConvNets are adopted for feature extraction and classification. However, both of previous two methods are sensitive to noise and could not differentiate well fine-grained actions. Fifth, it is proposed to represent a depth map sequence into three pairs of structured dynamic images at body, part and joint levels respectively through bidirectional rank pooling to deal with the issue. The structured dynamic image preserves the spatial-temporal information, enhances the structure information across both body parts/joints and different temporal scales, and takes advantages of ConvNets for action recognition. Sixth, it is proposed to extract and use scene flow for action recognition from RGB and depth data. Last, to exploit the joint information in multi-modal features arising from heterogeneous sources (RGB, depth), it is proposed to cooperatively train a single ConvNet (referred to as c-ConvNet) on both RGB features and depth features, and deeply aggregate the two modalities to achieve robust action recognition
    corecore