19,744 research outputs found

    Online Geometric Human Interaction Segmentation and Recognition

    Get PDF
    The goal of this work is the temporal localization and recognition of binary people interactions in video. Human-human interaction detection is one of the core problems in video analysis. It has many applications such as in video surveillance, video search and retrieval, human-computer interaction, and behavior analysis for safety and security. Despite the sizeable literature in the area of activity and action modeling and recognition, the vast majority of the approaches make the assumption that the beginning and the end of the video portion containing the action or the activity of interest is known. In other words, while a significant effort has been placed on the recognition, the spatial and temporal localization of activities, i.e. the detection problem, has received considerably less attention. Even more so, if the detection has to be made in an online fashion, as opposed to offline. The latter condition is imposed by almost the totality of the state-of-the-art, which makes it intrinsically unsuited for real-time processing. In this thesis, the problem of event localization and recognition is addressed in an online fashion. The main assumption is that an interaction, or an activity is modeled by a temporal sequence. One of the main challenges is the development of a modeling framework able to capture the complex variability of activities, described by high dimensional features. This is addressed by the combination of linear models with kernel methods. In particular, the parity space theory for detection, based on Euclidean geometry, is augmented to be able to work with kernels, through the use of geometric operators in Hilbert space. While this approach is general, here it is applied to the detection of human interactions. It is tested on a publicly available dataset and on a large and challenging, newly collected dataset. An extensive testing of the approach indicates that it sets a new state-of-the-art under several performance measures, and that it holds the promise to become an effective building block for the analysis in real-time of human behavior from video

    New Method for Optimization of License Plate Recognition system with Use of Edge Detection and Connected Component

    Full text link
    License Plate recognition plays an important role on the traffic monitoring and parking management systems. In this paper, a fast and real time method has been proposed which has an appropriate application to find tilt and poor quality plates. In the proposed method, at the beginning, the image is converted into binary mode using adaptive threshold. Then, by using some edge detection and morphology operations, plate number location has been specified. Finally, if the plat has tilt, its tilt is removed away. This method has been tested on another paper data set that has different images of the background, considering distance, and angel of view so that the correct extraction rate of plate reached at 98.66%.Comment: 3rd IEEE International Conference on Computer and Knowledge Engineering (ICCKE 2013), October 31 & November 1, 2013, Ferdowsi Universit Mashha

    The Whole World in Your Hand: Active and Interactive Segmentation

    Get PDF
    Object segmentation is a fundamental problem in computer vision and a powerful resource for development. This paper presents three embodied approaches to the visual segmentation of objects. Each approach to segmentation is aided by the presence of a hand or arm in the proximity of the object to be segmented. The first approach is suitable for a robotic system, where the robot can use its arm to evoke object motion. The second method operates on a wearable system, viewing the world from a human's perspective, with instrumentation to help detect and segment objects that are held in the wearer's hand. The third method operates when observing a human teacher, locating periodic motion (finger/arm/object waving or tapping) and using it as a seed for segmentation. We show that object segmentation can serve as a key resource for development by demonstrating methods that exploit high-quality object segmentations to develop both low-level vision capabilities (specialized feature detectors) and high-level vision capabilities (object recognition and localization)

    Data-Driven Shape Analysis and Processing

    Full text link
    Data-driven methods play an increasingly important role in discovering geometric, structural, and semantic relationships between 3D shapes in collections, and applying this analysis to support intelligent modeling, editing, and visualization of geometric data. In contrast to traditional approaches, a key feature of data-driven approaches is that they aggregate information from a collection of shapes to improve the analysis and processing of individual shapes. In addition, they are able to learn models that reason about properties and relationships of shapes without relying on hard-coded rules or explicitly programmed instructions. We provide an overview of the main concepts and components of these techniques, and discuss their application to shape classification, segmentation, matching, reconstruction, modeling and exploration, as well as scene analysis and synthesis, through reviewing the literature and relating the existing works with both qualitative and numerical comparisons. We conclude our report with ideas that can inspire future research in data-driven shape analysis and processing.Comment: 10 pages, 19 figure
    • …
    corecore