323 research outputs found

    Automated and Reliable Low-Complexity SoC Design Methodology for EEG Artefacts Removal

    Get PDF
    EEG is a non-invasive tool for neurodevelopmental disorder diagnosis (NDD) and treatment. However, EEG signal is mixed with other biological signals including Ocular and Muscular artefacts making it difficult to extract the diagnostic features. Therefore, the contaminated EEG channels are often discarded by the medical practitioners which may result in less accurate diagnosis. Independent Component Analysis (ICA) and wavelet-based algorithms require reference electrodes, which will create discomfort to the patient/children and cause hindrance to the diagnosis of the NDD and Brain Computer Interface (BCI). Therefore, it would be ideal if these artefacts can be removed real time and on hardware platform in an automated fashion and denoised EEG can be used for online diagnosis in a pervasive personalised healthcare environment without the need of any reference electrode. In this thesis we propose a reliable, robust and automated methodology to solve the aforementioned problem and its subsequent hardware implementation results are also presented. 100 EEG data from Physionet, Klinik fur Epileptologie, Universitat Bonn, Germany, Caltech EEG databases and 3 EEG data from 3 subjects from University of Southampton, UK have been studied and nine exhaustive case studies comprising of real and simulated data have been formulated and tested. The performance of the proposed methodology is measured in terms of correlation, regression and R-square statistics and the respective values lie above 80%, 79% and 65% with the gain in hardware complexity of 64.28% and hardware delay 53.58% compared to state-ofthe art approach. We believe the proposed methodology would be useful in next generation of pervasive healthcare for BCI and NDD diagnosis and treatment

    Decomposition and classification of electroencephalography data

    Get PDF

    Neonatal seizure detection based on single-channel EEG: instrumentation and algorithms

    Get PDF
    Seizure activity in the perinatal period, which constitutes the most common neurological emergency in the neonate, can cause brain disorders later in life or even death depending on their severity. This issue remains unsolved to date, despite the several attempts in tackling it using numerous methods. Therefore, a method is still needed that can enable neonatal cerebral activity monitoring to identify those at risk. Currently, electroencephalography (EEG) and amplitude-integrated EEG (aEEG) have been exploited for the identification of seizures in neonates, however both lack automation. EEG and aEEG are mainly visually analysed, requiring a specific skill set and as a result the presence of an expert on a 24/7 basis, which is not feasible. Additionally, EEG devices employed in neonatal intensive care units (NICU) are mainly designed around adults, meaning that their design specifications are not neonate specific, including their size due to multi-channel requirement in adults - adults minimum requirement is ≥ 32 channels, while gold standard in neonatal is equal to 10; they are bulky and occupy significant space in NICU. This thesis addresses the challenge of reliably, efficiently and effectively detecting seizures in the neonatal brain in a fully automated manner. Two novel instruments and two novel neonatal seizure detection algorithms (SDAs) are presented. The first instrument, named PANACEA, is a high-performance, wireless, wearable and portable multi-instrument, able to record neonatal EEG, as well as a plethora of (bio)signals. This device despite its high-performance characteristics and ability to record EEG, is mostly suggested to be used for the concurrent monitoring of other vital biosignals, such as electrocardiogram (ECG) and respiration, which provide vital information about a neonate's medical condition. The two aforementioned biosignals constitute two of the most important artefacts in the EEG and their concurrent acquisition benefit the SDA by providing information to an artefact removal algorithm. The second instrument, called neoEEG Board, is an ultra-low noise, wireless, portable and high precision neonatal EEG recording instrument. It is able to detect and record minute signals (< 10 nVp) enabling cerebral activity monitoring even from lower layers in the cortex. The neoEEG Board accommodates 8 inputs each one equipped with a patent-pending tunable filter topology, which allows passband formation based on the application. Both the PANACEA and the neoEEG Board are able to host low- to middle-complexity SDAs and they can operate continuously for at least 8 hours on 3-AA batteries. Along with PANACEA and the neoEEG Board, two novel neonatal SDAs have been developed. The first one, termed G prime-smoothed (G ́_s), is an on-line, automated, patient-specific, single-feature and single-channel EEG based SDA. The G ́_s SDA, is enabled by the invention of a novel feature, termed G prime (G ́) and can be characterised as an energy operator. The trace that the G ́_s creates, can also be used as a visualisation tool because of its distinct change at a presence of a seizure. Finally, the second SDA is machine learning (ML)-based and uses numerous features and a support vector machine (SVM) classifier. It can be characterised as automated, on-line and patient-independent, and similarly to G ́_s it makes use of a single-channel EEG. The proposed neonatal SDA introduces the use of the Hilbert-Huang transforms (HHT) in the field of neonatal seizure detection. The HHT analyses the non-linear and non-stationary EEG signal providing information for the signal as it evolves. Through the use of HHT novel features, such as the per intrinsic mode function (IMF) (0-3 Hz) sub-band power, were also employed. Detection rates of this novel neonatal SDA is comparable to multi-channel SDAs.Open Acces

    Reading the brain’s personality: using machine learning to investigate the relationships between EEG and depressivity

    Get PDF
    Electroencephalography (EEG) measures electrical signals on the scalp and can give information about processes near the surface of the brain (cortex). The goal of our research was to create models that predict depressivity (mapping to personality in general, not just sickness) and to find potential biomarkers in EEG data. First, to provide our models with cleaner EEG data, we designed a novel single-channel physiology-based eye blink artefact removal method and a mains power noise removal method. Then, we assessed two main machine learning model types (classification- and regression-based) with a total of eighteen sub-types to predict the depressivity of participants. The models were generated by combining four signal processing techniques with a) three classification techniques, and b) three regression techniques. The experimental results showed that both types of models perform well in depressivity prediction and one regression-based model (Reg-FFT-LSBoost) showed a significant depressivity prediction performance, especially for female group. More importantly, we found that a specific EEG frequency band (the gamma band) made major contributions to depressivity prediction. Apart from that, the alpha and beta band may make modest contributions. Specific locations (T7, T8, and C3) made major contributions to depressivity prediction. Frontal locations may also have some influence. We also found that the combination of both eye states’ EEG data showed a better depressivity prediction ability. Compared to the eyes closed data, the EEG data obtained from the state of eyes open were more suitable for assessing depressivity. In brief, the outcomes of this research provided the possibilities for translating the EEG data for depressivity measure. Furthermore, there are possibilities to extend the research to apply to other mental disorders’ prediction, such as anxiety

    EEG-based Brain-Computer Interfaces (BCIs): A Survey of Recent Studies on Signal Sensing Technologies and Computational Intelligence Approaches and Their Applications.

    Full text link
    Brain-Computer interfaces (BCIs) enhance the capability of human brain activities to interact with the environment. Recent advancements in technology and machine learning algorithms have increased interest in electroencephalographic (EEG)-based BCI applications. EEG-based intelligent BCI systems can facilitate continuous monitoring of fluctuations in human cognitive states under monotonous tasks, which is both beneficial for people in need of healthcare support and general researchers in different domain areas. In this review, we survey the recent literature on EEG signal sensing technologies and computational intelligence approaches in BCI applications, compensating for the gaps in the systematic summary of the past five years. Specifically, we first review the current status of BCI and signal sensing technologies for collecting reliable EEG signals. Then, we demonstrate state-of-the-art computational intelligence techniques, including fuzzy models and transfer learning in machine learning and deep learning algorithms, to detect, monitor, and maintain human cognitive states and task performance in prevalent applications. Finally, we present a couple of innovative BCI-inspired healthcare applications and discuss future research directions in EEG-based BCI research

    Neurophysiological vigilance characterisation and assessment: Laboratory and realistic validations involving professional air traffic controllers

    Get PDF
    Vigilance degradation usually causes significant performance decrement. It is also considered the major factor causing the out-of-the-loop phenomenon (OOTL) occurrence. OOTL is strongly related to a high level of automation in operative contexts such as the Air Traffic Management (ATM), and it could lead to a negative impact on the Air Traffic Controllers’ (ATCOs) engagement. As a consequence, being able to monitor the ATCOs’ vigilance would be very important to prevent risky situations. In this context, the present study aimed to characterise and assess the vigilance level by using electroencephalographic (EEG) measures. The first study, involving 13 participants in laboratory settings allowed to find out the neurophysiological features mostly related to vigilance decrements. Those results were also confirmed under realistic ATM settings recruiting 10 professional ATCOs. The results demonstrated that (i) there was a significant performance decrement related to vigilance reduction; (ii) there were no substantial differences between the identified neurophysiological features in controlled and ecological settings, and the EEG-channel configuration defined in laboratory was able to discriminate and classify vigilance changes in ATCOs’ vigilance with high accuracy (up to 84%); (iii) the derived two EEG-channel configuration was able to assess vigilance variations reporting only slight accuracy reduction

    AUTOMATED ARTIFACT REMOVAL AND DETECTION OF MILD COGNITIVE IMPAIRMENT FROM SINGLE CHANNEL ELECTROENCEPHALOGRAPHY SIGNALS FOR REAL-TIME IMPLEMENTATIONS ON WEARABLES

    Get PDF
    Electroencephalogram (EEG) is a technique for recording asynchronous activation of neuronal firing inside the brain with non-invasive scalp electrodes. EEG signal is well studied to evaluate the cognitive state, detect brain diseases such as epilepsy, dementia, coma, autism spectral disorder (ASD), etc. In this dissertation, the EEG signal is studied for the early detection of the Mild Cognitive Impairment (MCI). MCI is the preliminary stage of Dementia that may ultimately lead to Alzheimers disease (AD) in the elderly people. Our goal is to develop a minimalistic MCI detection system that could be integrated to the wearable sensors. This contribution has three major aspects: 1) cleaning the EEG signal, 2) detecting MCI, and 3) predicting the severity of the MCI using the data obtained from a single-channel EEG electrode. Artifacts such as eye blink activities can corrupt the EEG signals. We investigate unsupervised and effective removal of ocular artifact (OA) from single-channel streaming raw EEG data. Wavelet transform (WT) decomposition technique was systematically evaluated for effectiveness of OA removal for a single-channel EEG system. Discrete Wavelet Transform (DWT) and Stationary Wavelet Transform (SWT), is studied with four WT basis functions: haar, coif3, sym3, and bior4.4. The performance of the artifact removal algorithm was evaluated by the correlation coefficients (CC), mutual information (MI), signal to artifact ratio (SAR), normalized mean square error (NMSE), and time-frequency analysis. It is demonstrated that WT can be an effective tool for unsupervised OA removal from single channel EEG data for real-time applications.For the MCI detection from the clean EEG data, we collected the scalp EEG data, while the subjects were stimulated with five auditory speech signals. We extracted 590 features from the Event-Related Potential (ERP) of the collected EEG signals, which included time and spectral domain characteristics of the response. The top 25 features, ranked by the random forest method, were used for classification models to identify subjects with MCI. Robustness of our model was tested using leave-one-out cross-validation while training the classifiers. Best results (leave-one-out cross-validation accuracy 87.9%, sensitivity 84.8%, specificity 95%, and F score 85%) were obtained using support vector machine (SVM) method with Radial Basis Kernel (RBF) (sigma = 10, cost = 102). Similar performances were also observed with logistic regression (LR), further validating the results. Our results suggest that single-channel EEG could provide a robust biomarker for early detection of MCI. We also developed a single channel Electro-encephalography (EEG) based MCI severity monitoring algorithm by generating the Montreal Cognitive Assessment (MoCA) scores from the features extracted from EEG. We performed multi-trial and single-trail analysis for the algorithm development of the MCI severity monitoring. We studied Multivariate Regression (MR), Ensemble Regression (ER), Support Vector Regression (SVR), and Ridge Regression (RR) for multi-trial and deep neural regression for the single-trial analysis. In the case of multi-trial, the best result was obtained from the ER. In our single-trial analysis, we constructed the time-frequency image from each trial and feed it to the convolutional deep neural network (CNN). Performance of the regression models was evaluated by the RMSE and the residual analysis. We obtained the best accuracy with the deep neural regression method

    ARTIFACT CHARACTERIZATION, DETECTION AND REMOVAL FROM NEURAL SIGNALS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    INVESTIGATION, DEVELOPMENT AND APPLICATION OF KNOWLEDGE BASED DIGITAL SIGNAL PROCESSING METHODS FOR ENHANCING HUMAN EEGsJ

    Get PDF
    This thesis details the development of new and reliable techniques for enhancing the human Electroencephalogram {EEGI. This development has involved the incorporation of adaptive signal processing (ASP) techniques, within an artificial intelligence (Al) paradigm, more closely matching the implicit signal analysis capabilities of the EEG expert. The need for EEG enhancement, by removal of ocular artefact (OA) , is widely recognised. However, conventional ASP techniques for OA removal fail to differentiate between OAs and some abnormal cerebral waveforms, such as frontal slow waves. OA removal often results in the corruption of these diagnostically important cerebral waveforms. However, the experienced EEG expert is often able to differentiate between OA and abnormal slow waveforms, and between different types of OA. This EEG expert knowledge is integrated with selectable adaptive filters in an intelligent OA removal system (tOARS). The EEG is enhanced by only removing OA when OA is identified, and by applying the OA removal algorithm pre-set for the specific OA type. Extensive EEG data acquisition has provided a database of abnormal EEG recordings from over 50 patients, exhibiting a variety of cerebral abnormalities. Structured knowledge elicitation has provided over 60 production rules for OA identification in the presence of abnormal frontal slow waveforms, and for distinguishing between OA types. The lOARS was implemented on personal computer (PCI based hardware in PROLOG and C software languages. 2-second, 18-channel, EEG signal segments are subjected to digital signal processing, to extract salient features from time, frequency, and contextual domains. OA is identified using a forward/backward hybrid inference engine, with uncertainty management, using the elicited expert rules and extracted signal features. Evaluation of the system has been carried out using both normal and abnormal patient EEGs, and this shows a high agreement (82.7%) in OA identification between the lOARS and an EEG expert. This novel development provides a significant improvement in OA removal, and EEG signal enhancement, and will allow more reliable automated EEG analysis. The investigation detailed in this thesis has led to 4 papers, including one in a special proceedings of the lEE, and been subject to several review articles.Department of Neurophysiology, Derriford Hospital, Plymouth, Devo
    corecore