989 research outputs found

    A Unified Successive Pseudo-Convex Approximation Framework

    Get PDF
    In this paper, we propose a successive pseudo-convex approximation algorithm to efficiently compute stationary points for a large class of possibly nonconvex optimization problems. The stationary points are obtained by solving a sequence of successively refined approximate problems, each of which is much easier to solve than the original problem. To achieve convergence, the approximate problem only needs to exhibit a weak form of convexity, namely, pseudo-convexity. We show that the proposed framework not only includes as special cases a number of existing methods, for example, the gradient method and the Jacobi algorithm, but also leads to new algorithms which enjoy easier implementation and faster convergence speed. We also propose a novel line search method for nondifferentiable optimization problems, which is carried out over a properly constructed differentiable function with the benefit of a simplified implementation as compared to state-of-the-art line search techniques that directly operate on the original nondifferentiable objective function. The advantages of the proposed algorithm are shown, both theoretically and numerically, by several example applications, namely, MIMO broadcast channel capacity computation, energy efficiency maximization in massive MIMO systems and LASSO in sparse signal recovery.Comment: submitted to IEEE Transactions on Signal Processing; original title: A Novel Iterative Convex Approximation Metho

    Constrained Global Optimization by Smoothing

    Full text link
    This paper proposes a novel technique called "successive stochastic smoothing" that optimizes nonsmooth and discontinuous functions while considering various constraints. Our methodology enables local and global optimization, making it a powerful tool for many applications. First, a constrained problem is reduced to an unconstrained one by the exact nonsmooth penalty function method, which does not assume the existence of the objective function outside the feasible area and does not require the selection of the penalty coefficient. This reduction is exact in the case of minimization of a lower semicontinuous function under convex constraints. Then the resulting objective function is sequentially smoothed by the kernel method starting from relatively strong smoothing and with a gradually vanishing degree of smoothing. The finite difference stochastic gradient descent with trajectory averaging minimizes each smoothed function locally. Finite differences over stochastic directions sampled from the kernel estimate the stochastic gradients of the smoothed functions. We investigate the convergence rate of such stochastic finite-difference method on convex optimization problems. The "successive smoothing" algorithm uses the results of previous optimization runs to select the starting point for optimizing a consecutive, less smoothed function. Smoothing provides the "successive smoothing" method with some global properties. We illustrate the performance of the "successive stochastic smoothing" method on test-constrained optimization problems from the literature.Comment: 17 pages, 1 tabl
    • …
    corecore