5,580 research outputs found

    Suboptimal Safety-Critical Control for Continuous Systems Using Prediction-Correction Online Optimization

    Full text link
    This paper investigates the control barrier function (CBF) based safety-critical control for continuous nonlinear control affine systems using more efficient online algorithms by the time-varying optimization method. The idea of the algorithms is that when quadratic programming (QP) or other convex optimization algorithms needed in the CBF-based method is not computation affordable, the alternative suboptimal feasible solutions can be obtained more economically. By using the barrier-based interior point method, the constrained CBF-QP problems are transformed into unconstrained ones with suboptimal solutions tracked by two continuous descent-based algorithms. Considering the lag effect of tracking and exploiting the system information, the prediction method is added to the algorithms, which achieves exponential convergence to the time-varying suboptimal solutions. The convergence and robustness of the designed methods as well as the safety criteria of the algorithms are studied theoretically. The effectiveness is illustrated by simulations on the anti-swing and obstacle avoidance tasks

    Multi-agent pathfinding for unmanned aerial vehicles

    Get PDF
    Unmanned aerial vehicles (UAVs), commonly known as drones, have become more and more prevalent in recent years. In particular, governmental organizations and companies around the world are starting to research how UAVs can be used to perform tasks such as package deliver, disaster investigation and surveillance of key assets such as pipelines, railroads and bridges. NASA is currently in the early stages of developing an air traffic control system specifically designed to manage UAV operations in low-altitude airspace. Companies such as Amazon and Rakuten are testing large-scale drone deliver services in the USA and Japan. To perform these tasks, safe and conflict-free routes for concurrently operating UAVs must be found. This can be done using multi-agent pathfinding (mapf) algorithms, although the correct choice of algorithms is not clear. This is because many state of the art mapf algorithms have only been tested in 2D space in maps with many obstacles, while UAVs operate in 3D space in open maps with few obstacles. In addition, when an unexpected event occurs in the airspace and UAVs are forced to deviate from their original routes while inflight, new conflict-free routes must be found. Planning for these unexpected events is commonly known as contingency planning. With manned aircraft, contingency plans can be created in advance or on a case-by-case basis while inflight. The scale at which UAVs operate, combined with the fact that unexpected events may occur anywhere at any time make both advanced planning and planning on a case-by-case basis impossible. Thus, a new approach is needed. Online multi-agent pathfinding (online mapf) looks to be a promising solution. Online mapf utilizes traditional mapf algorithms to perform path planning in real-time. That is, new routes for UAVs are found while inflight. The primary contribution of this thesis is to present one possible approach to UAV contingency planning using online multi-agent pathfinding algorithms, which can be used as a baseline for future research and development. It also provides an in-depth overview and analysis of offline mapf algorithms with the goal of determining which ones are likely to perform best when applied to UAVs. Finally, to further this same goal, a few different mapf algorithms are experimentally tested and analyzed

    Towards parallelizable sampling-based Nonlinear Model Predictive Control

    Full text link
    This paper proposes a new sampling-based nonlinear model predictive control (MPC) algorithm, with a bound on complexity quadratic in the prediction horizon N and linear in the number of samples. The idea of the proposed algorithm is to use the sequence of predicted inputs from the previous time step as a warm start, and to iteratively update this sequence by changing its elements one by one, starting from the last predicted input and ending with the first predicted input. This strategy, which resembles the dynamic programming principle, allows for parallelization up to a certain level and yields a suboptimal nonlinear MPC algorithm with guaranteed recursive feasibility, stability and improved cost function at every iteration, which is suitable for real-time implementation. The complexity of the algorithm per each time step in the prediction horizon depends only on the horizon, the number of samples and parallel threads, and it is independent of the measured system state. Comparisons with the fmincon nonlinear optimization solver on benchmark examples indicate that as the simulation time progresses, the proposed algorithm converges rapidly to the "optimal" solution, even when using a small number of samples.Comment: 9 pages, 9 pictures, submitted to IFAC World Congress 201

    DoShiCo Challenge: Domain Shift in Control Prediction

    Full text link
    Training deep neural network policies end-to-end for real-world applications so far requires big demonstration datasets in the real world or big sets consisting of a large variety of realistic and closely related 3D CAD models. These real or virtual data should, moreover, have very similar characteristics to the conditions expected at test time. These stringent requirements and the time consuming data collection processes that they entail, are currently the most important impediment that keeps deep reinforcement learning from being deployed in real-world applications. Therefore, in this work we advocate an alternative approach, where instead of avoiding any domain shift by carefully selecting the training data, the goal is to learn a policy that can cope with it. To this end, we propose the DoShiCo challenge: to train a model in very basic synthetic environments, far from realistic, in a way that it can be applied in more realistic environments as well as take the control decisions on real-world data. In particular, we focus on the task of collision avoidance for drones. We created a set of simulated environments that can be used as benchmark and implemented a baseline method, exploiting depth prediction as an auxiliary task to help overcome the domain shift. Even though the policy is trained in very basic environments, it can learn to fly without collisions in a very different realistic simulated environment. Of course several benchmarks for reinforcement learning already exist - but they never include a large domain shift. On the other hand, several benchmarks in computer vision focus on the domain shift, but they take the form of a static datasets instead of simulated environments. In this work we claim that it is crucial to take the two challenges together in one benchmark.Comment: Published at SIMPAR 2018. Please visit the paper webpage for more information, a movie and code for reproducing results: https://kkelchte.github.io/doshic
    • …
    corecore