20 research outputs found

    DNA-inspired online behavioral modeling and its application to spambot detection

    Get PDF
    We propose a strikingly novel, simple, and effective approach to model online user behavior: we extract and analyze digital DNA sequences from user online actions and we use Twitter as a benchmark to test our proposal. We obtain an incisive and compact DNA-inspired characterization of user actions. Then, we apply standard DNA analysis techniques to discriminate between genuine and spambot accounts on Twitter. An experimental campaign supports our proposal, showing its effectiveness and viability. To the best of our knowledge, we are the first ones to identify and adapt DNA-inspired techniques to online user behavioral modeling. While Twitter spambot detection is a specific use case on a specific social media, our proposed methodology is platform and technology agnostic, hence paving the way for diverse behavioral characterization tasks

    The paradigm-shift of social spambots: Evidence, theories, and tools for the arms race

    Full text link
    Recent studies in social media spam and automation provide anecdotal argumentation of the rise of a new generation of spambots, so-called social spambots. Here, for the first time, we extensively study this novel phenomenon on Twitter and we provide quantitative evidence that a paradigm-shift exists in spambot design. First, we measure current Twitter's capabilities of detecting the new social spambots. Later, we assess the human performance in discriminating between genuine accounts, social spambots, and traditional spambots. Then, we benchmark several state-of-the-art techniques proposed by the academic literature. Results show that neither Twitter, nor humans, nor cutting-edge applications are currently capable of accurately detecting the new social spambots. Our results call for new approaches capable of turning the tide in the fight against this raising phenomenon. We conclude by reviewing the latest literature on spambots detection and we highlight an emerging common research trend based on the analysis of collective behaviors. Insights derived from both our extensive experimental campaign and survey shed light on the most promising directions of research and lay the foundations for the arms race against the novel social spambots. Finally, to foster research on this novel phenomenon, we make publicly available to the scientific community all the datasets used in this study.Comment: To appear in Proc. 26th WWW, 2017, Companion Volume (Web Science Track, Perth, Australia, 3-7 April, 2017

    LSSL-SSD: Social spammer detection with Laplacian score and semi-supervised learning

    Full text link
    © Springer International Publishing AG 2016. The rapid development of social networks makes it easy for people to communicate online. However, social networks usually suffer from social spammers due to their openness. Spammers deliver information for economic purposes, and they pose threats to the security of social networks. To maintain the long-term running of online social networks, many detection methods are proposed. But current methods normally use high dimension features with supervised learning algorithms to find spammers, resulting in low detection performance. To solve this problem, in this paper, we first apply the Laplacian score method, which is an unsupervised feature selection method, to obtain useful features. Based on the selected features, the semi-supervised ensemble learning is then used to train the detection model. Experimental results on the Twitter dataset show the efficiency of our approach after feature selection. Moreover, the proposed method remains high detection performance in the face of limited labeled data

    Social spammer detection: A multi-relational embedding approach

    Full text link
    © Springer International Publishing AG, part of Springer Nature 2018. Since the relation is the main data shape of social networks, social spammer detection desperately needs a relation-dependent but content-independent framework. Some recent detection method transforms the social relations into a set of topological features, such as degree, k-core, etc. However, the multiple heterogeneous relations and the direction within each relation have not been fully explored for identifying social spammers. In this paper, we make an attempt to adopt the Multi-Relational Embedding (MRE) approach for learning latent features of the social network. The MRE model is able to fuse multiple kinds of different relations and also learn two latent vectors for each relation indicating both sending role and receiving role of every user, respectively. Experimental results on a real-world multi-relational social network demonstrate the latent features extracted by our MRE model can improve the detection performance remarkably

    Social Fingerprinting: detection of spambot groups through DNA-inspired behavioral modeling

    Full text link
    Spambot detection in online social networks is a long-lasting challenge involving the study and design of detection techniques capable of efficiently identifying ever-evolving spammers. Recently, a new wave of social spambots has emerged, with advanced human-like characteristics that allow them to go undetected even by current state-of-the-art algorithms. In this paper, we show that efficient spambots detection can be achieved via an in-depth analysis of their collective behaviors exploiting the digital DNA technique for modeling the behaviors of social network users. Inspired by its biological counterpart, in the digital DNA representation the behavioral lifetime of a digital account is encoded in a sequence of characters. Then, we define a similarity measure for such digital DNA sequences. We build upon digital DNA and the similarity between groups of users to characterize both genuine accounts and spambots. Leveraging such characterization, we design the Social Fingerprinting technique, which is able to discriminate among spambots and genuine accounts in both a supervised and an unsupervised fashion. We finally evaluate the effectiveness of Social Fingerprinting and we compare it with three state-of-the-art detection algorithms. Among the peculiarities of our approach is the possibility to apply off-the-shelf DNA analysis techniques to study online users behaviors and to efficiently rely on a limited number of lightweight account characteristics

    Detecting video spammers in YouTube social media

    Get PDF
    Social media is any site that provides a network of people with a place to make connections.An example of the media is YouTube that connects people through video sharing.Unfortunately, due to the explosive number of users and various content sharing, there exist malicious users who aim to self-promote their videos or broadcast unrelated content. Even though the detection of malicious users is based on various features such as content details, social activity, social network analyzing, or hybrid, the detection rate is still considered low (i.e. 46%).This study proposes a new set of features by constructing features based on the Edge Rank algorithm.Experiments were performed using nine classifiers of different learning; decision tree, function-based and Bayesian. The results showed that the proposed video spammers detection feature set is beneficial as the highest accuracy (i.e average) is as high as 98% and the lowest was 74%.The proposed work would benefit YouTube users as malicious users who are sharing non relevant content can be automatically detected.This is because system resources can be optimized as YouTube users are presented with the required content only

    GAD-NR: Graph Anomaly Detection via Neighborhood Reconstruction

    Full text link
    Graph Anomaly Detection (GAD) is a technique used to identify abnormal nodes within graphs, finding applications in network security, fraud detection, social media spam detection, and various other domains. A common method for GAD is Graph Auto-Encoders (GAEs), which encode graph data into node representations and identify anomalies by assessing the reconstruction quality of the graphs based on these representations. However, existing GAE models are primarily optimized for direct link reconstruction, resulting in nodes connected in the graph being clustered in the latent space. As a result, they excel at detecting cluster-type structural anomalies but struggle with more complex structural anomalies that do not conform to clusters. To address this limitation, we propose a novel solution called GAD-NR, a new variant of GAE that incorporates neighborhood reconstruction for graph anomaly detection. GAD-NR aims to reconstruct the entire neighborhood of a node, encompassing the local structure, self-attributes, and neighbor attributes, based on the corresponding node representation. By comparing the neighborhood reconstruction loss between anomalous nodes and normal nodes, GAD-NR can effectively detect any anomalies. Extensive experimentation conducted on six real-world datasets validates the effectiveness of GAD-NR, showcasing significant improvements (by up to 30% in AUC) over state-of-the-art competitors. The source code for GAD-NR is openly available. Importantly, the comparative analysis reveals that the existing methods perform well only in detecting one or two types of anomalies out of the three types studied. In contrast, GAD-NR excels at detecting all three types of anomalies across the datasets, demonstrating its comprehensive anomaly detection capabilities.Comment: Accepted at the 17th ACM International Conference on Web Search and Data Mining (WSDM-2024
    corecore