8,498 research outputs found

    SEISMIC: A Self-Exciting Point Process Model for Predicting Tweet Popularity

    Full text link
    Social networking websites allow users to create and share content. Big information cascades of post resharing can form as users of these sites reshare others' posts with their friends and followers. One of the central challenges in understanding such cascading behaviors is in forecasting information outbreaks, where a single post becomes widely popular by being reshared by many users. In this paper, we focus on predicting the final number of reshares of a given post. We build on the theory of self-exciting point processes to develop a statistical model that allows us to make accurate predictions. Our model requires no training or expensive feature engineering. It results in a simple and efficiently computable formula that allows us to answer questions, in real-time, such as: Given a post's resharing history so far, what is our current estimate of its final number of reshares? Is the post resharing cascade past the initial stage of explosive growth? And, which posts will be the most reshared in the future? We validate our model using one month of complete Twitter data and demonstrate a strong improvement in predictive accuracy over existing approaches. Our model gives only 15% relative error in predicting final size of an average information cascade after observing it for just one hour.Comment: 10 pages, published in KDD 201

    Mean-Field-Type Games in Engineering

    Full text link
    A mean-field-type game is a game in which the instantaneous payoffs and/or the state dynamics functions involve not only the state and the action profile but also the joint distributions of state-action pairs. This article presents some engineering applications of mean-field-type games including road traffic networks, multi-level building evacuation, millimeter wave wireless communications, distributed power networks, virus spread over networks, virtual machine resource management in cloud networks, synchronization of oscillators, energy-efficient buildings, online meeting and mobile crowdsensing.Comment: 84 pages, 24 figures, 183 references. to appear in AIMS 201

    Data Dissemination And Information Diffusion In Social Networks

    Get PDF
    Data dissemination problem is a challenging issue in social networks, especially in mobile social networks, which grows rapidly in recent years worldwide with a significant increasing number of hand-on mobile devices such as smart phones and pads. Short-range radio communications equipped in mobile devices enable mobile users to access their interested contents not only from access points of Internet but also from other mobile users. Through proper data dissemination among mobile users, the bandwidth of the short-range communications can be better utilized and alleviate the stress on the bandwidth of the cellular networks. In this dissertation proposal, data dissemination problem in mobile social networks is studied. Before data dissemination emerges in the research of mobile social networks, routing protocol of finding efficient routing path in mobile social networks was the focus, which later became the pavement for the study of the efficient data dissemination. Data dissemination priorities on packet dissemination from multiple sources to multiple destinations while routing protocol simply focus on finding routing path between two ends in the networks. The first works in the literature of data dissemination problem were based on the modification and improvement of routing protocols in mobile social networks. Therefore, we first studied and proposed a prediction-based routing protocol in delay tolerant networks. Delay tolerant network appears earlier than mobile social networks. With respect to delay tolerant networks, mobile social networks also consider social patterns as well as mobility patterns. In our work, we simply come up with the prediction-based routing protocol through analysis of user mobility patterns. We can also apply our proposed protocol in mobile social networks. Secondly, in literature, efficient data dissemination schemes are proposed to improve the data dissemination ratio and with reasonable overhead in the networks. However, the overhead may be not well controlled in the existing works. A social-aware data dissemination scheme is proposed in this dissertation proposal to study efficient data dissemination problem with controlled overhead in mobile social networks. The data dissemination scheme is based on the study on both mobility patterns and social patterns of mobile social networks. Thirdly, in real world cases, an efficient data dissemination in mobile social networks can never be realized if mobile users are selfish, which is true unfortunately in fact. Therefore, how to strengthen nodal cooperation for data dissemination is studied and a credit-based incentive data dissemination protocol is also proposed in this dissertation. Data dissemination problem was primarily researched on mobile social networks. When consider large social networks like online social networks, another similar problem was researched, namely, information diffusion problem. One specific problem is influence maximization problem in online social networks, which maximize the result of information diffusion process. In this dissertation proposal, we proposed a new information diffusion model, namely, sustaining cascading (SC) model to study the influence maximization problem and based on the SC model, we further plan our research work on the information diffusion problem aiming at minimizing the influence diffusion time with subject to an estimated influence coverage
    • …
    corecore