17 research outputs found

    Attribute-Graph: A Graph based approach to Image Ranking

    Full text link
    We propose a novel image representation, termed Attribute-Graph, to rank images by their semantic similarity to a given query image. An Attribute-Graph is an undirected fully connected graph, incorporating both local and global image characteristics. The graph nodes characterise objects as well as the overall scene context using mid-level semantic attributes, while the edges capture the object topology. We demonstrate the effectiveness of Attribute-Graphs by applying them to the problem of image ranking. We benchmark the performance of our algorithm on the 'rPascal' and 'rImageNet' datasets, which we have created in order to evaluate the ranking performance on complex queries containing multiple objects. Our experimental evaluation shows that modelling images as Attribute-Graphs results in improved ranking performance over existing techniques.Comment: In IEEE International Conference on Computer Vision (ICCV) 201

    Siamese Instance Search for Tracking

    Get PDF
    In this paper we present a tracker, which is radically different from state-of-the-art trackers: we apply no model updating, no occlusion detection, no combination of trackers, no geometric matching, and still deliver state-of-the-art tracking performance, as demonstrated on the popular online tracking benchmark (OTB) and six very challenging YouTube videos. The presented tracker simply matches the initial patch of the target in the first frame with candidates in a new frame and returns the most similar patch by a learned matching function. The strength of the matching function comes from being extensively trained generically, i.e., without any data of the target, using a Siamese deep neural network, which we design for tracking. Once learned, the matching function is used as is, without any adapting, to track previously unseen targets. It turns out that the learned matching function is so powerful that a simple tracker built upon it, coined Siamese INstance search Tracker, SINT, which only uses the original observation of the target from the first frame, suffices to reach state-of-the-art performance. Further, we show the proposed tracker even allows for target re-identification after the target was absent for a complete video shot.Comment: This paper is accepted to the IEEE Conference on Computer Vision and Pattern Recognition, 201

    Visual Tracking by Sampling in Part Space

    Get PDF
    In this paper, we present a novel part-based visual tracking method from the perspective of probability sampling. Specifically, we represent the target by a part space with two online learned probabilities to capture the structure of the target. The proposal distribution memorizes the historical performance of different parts, and it is used for the first round of part selection. The acceptance probability validates the specific tracking stability of each part in a frame, and it determines whether to accept its vote or to reject it. By doing this, we transform the complex online part selection problem into a probability learning one, which is easier to tackle. The observation model of each part is constructed by an improved supervised descent method and is learned in an incremental manner. Experimental results on two benchmarks demonstrate the competitive performance of our tracker against state-of-the-art methods

    Robust Individual-Cell/Object Tracking via PCANet Deep Network in Biomedicine and Computer Vision

    Get PDF
    corecore