6 research outputs found

    Online Non-preemptive Scheduling on Unrelated Machines with Rejections

    Full text link
    When a computer system schedules jobs there is typically a significant cost associated with preempting a job during execution. This cost can be from the expensive task of saving the memory's state and loading data into and out of memory. It is desirable to schedule jobs non-preemptively to avoid the costs of preemption. There is a need for non-preemptive system schedulers on desktops, servers and data centers. Despite this need, there is a gap between theory and practice. Indeed, few non-preemptive \emph{online} schedulers are known to have strong foundational guarantees. This gap is likely due to strong lower bounds on any online algorithm for popular objectives. Indeed, typical worst case analysis approaches, and even resource augmented approaches such as speed augmentation, result in all algorithms having poor performance guarantees. This paper considers on-line non-preemptive scheduling problems in the worst-case rejection model where the algorithm is allowed to reject a small fraction of jobs. By rejecting only a few jobs, this paper shows that the strong lower bounds can be circumvented. This approach can be used to discover algorithmic scheduling policies with desirable worst-case guarantees. Specifically, the paper presents algorithms for the following two objectives: minimizing the total flow-time and minimizing the total weighted flow-time plus energy under the speed-scaling mechanism. The algorithms have a small constant competitive ratio while rejecting only a constant fraction of jobs. Beyond specific results, the paper asserts that alternative models beyond speed augmentation should be explored to aid in the discovery of good schedulers in the face of the requirement of being online and non-preemptive

    Online Non-Preemptive Scheduling to Minimize Weighted Flow-time on Unrelated Machines

    Get PDF
    In this paper, we consider the online problem of scheduling independent jobs non-preemptively so as to minimize the weighted flow-time on a set of unrelated machines. There has been a considerable amount of work on this problem in the preemptive setting where several competitive algorithms are known in the classical competitive model. However, the problem in the non-preemptive setting admits a strong lower bound. Recently, Lucarelli et al. presented an algorithm that achieves a O(1/epsilon^2)-competitive ratio when the algorithm is allowed to reject epsilon-fraction of total weight of jobs and has an epsilon-speed augmentation. They further showed that speed augmentation alone is insufficient to derive any competitive algorithm. An intriguing open question is whether there exists a scalable competitive algorithm that rejects a small fraction of total weights. In this paper, we affirmatively answer this question. Specifically, we show that there exists a O(1/epsilon^3)-competitive algorithm for minimizing weighted flow-time on a set of unrelated machine that rejects at most O(epsilon)-fraction of total weight of jobs. The design and analysis of the algorithm is based on the primal-dual technique. Our result asserts that alternative models beyond speed augmentation should be explored when designing online schedulers in the non-preemptive setting in an effort to find provably good algorithms

    Minimizing the Maximum Flow Time in the Online Food Delivery Problem

    Get PDF
    We study a common delivery problem encountered in nowadays online food-ordering platforms: Customers order dishes online, and the restaurant delivers the food after receiving the order. Specifically, we study a problem where k vehicles of capacity c are serving a set of requests ordering food from one restaurant. After a request arrives, it can be served by a vehicle moving from the restaurant to its delivery location. We are interested in serving all requests while minimizing the maximum flow-time, i.e., the maximum time length a customer waits to receive his/her food after submitting the order. We show that the problem is hard in both offline and online settings even when k = 1 and c = ?: There is a hardness of approximation of ?(n) for the offline problem, and a lower bound of ?(n) on the competitive ratio of any online algorithm, where n is number of points in the metric. We circumvent the strong negative results in two directions. Our main result is an O(1)-competitive online algorithm for the uncapacitated (i.e, c = ?) food delivery problem on tree metrics; we also have negative result showing that the condition c = ? is needed. Then we explore the speed-augmentation model where our online algorithm is allowed to use vehicles with faster speed. We show that a moderate speeding factor leads to a constant competitive ratio, and we prove a tight trade-off between the speeding factor and the competitive ratio

    Online Non-preemptive Scheduling on Unrelated Machines with Rejections

    No full text
    International audienceWhen a computer system schedules jobs there is typically a significant cost associated with preempting a job during execution. This cost can be incurred from the expensive task of saving the memory’s state or from loading data into and out of memory. Thus, it is desirable to schedule jobs non-preemptively to avoid the costs of preemption. There is a need for non-preemptive system schedulers for desktops, servers, and data centers. Despite this need, there is a gap between theory and practice. Indeed, few non-preemptive online schedulers are known to have strong theoretical guarantees. This gap is likely due to strong lower bounds on any online algorithm for popular objectives. Indeed, typical worst-case analysis approaches, and even resource-augmented approaches such as speed augmentation, result in all algorithms having poor performance guarantees. This article considers online non-preemptive scheduling problems in the worst-case rejection model where the algorithm is allowed to reject a small fraction of jobs. By rejecting only a few jobs, this article shows that the strong lower bounds can be circumvented. This approach can be used to discover algorithmic scheduling policies with desirable worst-case guarantees. Specifically, the article presents algorithms for the following three objectives: minimizing the total flow-time, minimizing the total weighted flow-time plus energy where energy is a convex function, and minimizing the total energy under the deadline constraints. The algorithms for the first two problems have a small constant competitive ratio while rejecting only a constant fraction of jobs. For the last problem, we present a constant competitive ratio without rejection. Beyond specific results, the article asserts that alternative models beyond speed augmentation should be explored to aid in the discovery of good schedulers in the face of the requirement of being online and non-preemptive

    Online Non-preemptive Scheduling on Unrelated Machines with Rejections

    No full text
    International audienceWhen a computer system schedules jobs there is typically a significant cost associated with preempting a job during execution. This cost can be from the expensive task of saving the memory's state and loading data into and out of memory. There is a need for non-preemptive system schedulers to avoid the costs of preemption on desktops, servers and data centers. Despite this need, there is a gap between theory and practice. Indeed, few non-preemptive online schedulers are known to have strong foundational guarantees. This gap is likely due to strong lower bounds on any online algorithm for popular objectives. Indeed, typical worst case analysis approaches, and even resource augmented approaches such as speed augmentation, result in all algorithms having poor performance guarantees. This paper considers online non-preemptive scheduling problems in the worst-case model where the algorithm is allowed to reject a small fraction of jobs. By rejecting only few jobs, this paper shows that the strong lower bounds can be circumvented. This model can be used to discover scheduling policies with desirable worst-case guarantees. Specifically, the paper presents algorithms for minimizing the total flow-time and minimizing the total weighted flow-time plus energy under the speed-scaling mechanism. The algorithms have a small constant competitive ratio while rejecting only a constant fraction of jobs. Beyond specific results, the paper asserts that alternative models beyond speed augmentation should be explored to aid in the discovery of good schedulers in the face of the requirement of being online and non-preemptive

    LIPIcs, Volume 248, ISAAC 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 248, ISAAC 2022, Complete Volum
    corecore