371 research outputs found

    On-Line Dependability Enhancement of Multiprocessor SoCs by Resource Management

    Get PDF
    This paper describes a new approach towards dependable design of homogeneous multi-processor SoCs in an example satellite-navigation application. First, the NoC dependability is functionally verified via embedded software. Then the Xentium processor tiles are periodically verified via on-line self-testing techniques, by using a new IIP Dependability Manager. Based on the Dependability Manager results, faulty tiles are electronically excluded and replaced by fault-free spare tiles via on-line resource management. This integrated approach enables fast electronic fault detection/diagnosis and repair, and hence a high system availability. The dependability application runs in parallel with the actual application, resulting in a very dependable system. All parts have been verified by simulation

    DeSyRe: on-Demand System Reliability

    No full text
    The DeSyRe project builds on-demand adaptive and reliable Systems-on-Chips (SoCs). As fabrication technology scales down, chips are becoming less reliable, thereby incurring increased power and performance costs for fault tolerance. To make matters worse, power density is becoming a significant limiting factor in SoC design, in general. In the face of such changes in the technological landscape, current solutions for fault tolerance are expected to introduce excessive overheads in future systems. Moreover, attempting to design and manufacture a totally defect and fault-free system, would impact heavily, even prohibitively, the design, manufacturing, and testing costs, as well as the system performance and power consumption. In this context, DeSyRe delivers a new generation of systems that are reliable by design at well-balanced power, performance, and design costs. In our attempt to reduce the overheads of fault-tolerance, only a small fraction of the chip is built to be fault-free. This fault-free part is then employed to manage the remaining fault-prone resources of the SoC. The DeSyRe framework is applied to two medical systems with high safety requirements (measured using the IEC 61508 functional safety standard) and tight power and performance constraints

    Analyse und Erweiterung eines fehler-toleranten NoC fĂĽr SRAM-basierte FPGAs in Weltraumapplikationen

    Get PDF
    Data Processing Units for scientific space mission need to process ever higher volumes of data and perform ever complex calculations. But the performance of available space-qualified general purpose processors is just in the lower three digit megahertz range, which is already insufficient for some applications. As an alternative, suitable processing steps can be implemented in hardware on a space-qualified SRAM-based FPGA. However, suitable devices are susceptible against space radiation. At the Institute for Communication and Network Engineering a fault-tolerant, network-based communication architecture was developed, which enables the construction of processing chains on the basis of different processing modules within suitable SRAM-based FPGAs and allows the exchange of single processing modules during runtime, too. The communication architecture and its protocol shall isolate non SEU mitigated or just partial SEU mitigated modules affected by radiation-induced faults to prohibit the propagation of errors within the remaining System-on-Chip. In the context of an ESA study, this communication architecture was extended with further components and implemented in a representative hardware platform. Based on the acquired experiences during the study, this work analyses the actual fault-tolerance characteristics as well as weak points of this initial implementation. At appropriate locations, the communication architecture was extended with mechanisms for fault-detection and fault-differentiation as well as with a hardware-based monitoring solution. Both, the former measures and the extension of the employed hardware-platform with selective fault-injection capabilities for the emulation of radiation-induced faults within critical areas of a non SEU mitigated processing module, are used to evaluate the effects of radiation-induced faults within the communication architecture. By means of the gathered results, further measures to increase fast detection and isolation of faulty nodes are developed, selectively implemented and verified. In particular, the ability of the communication architecture to isolate network nodes without SEU mitigation could be significantly improved.Instrumentenrechner für wissenschaftliche Weltraummissionen müssen ein immer höheres Datenvolumen verarbeiten und immer komplexere Berechnungen ausführen. Die Performanz von verfügbaren qualifizierten Universalprozessoren liegt aber lediglich im unteren dreistelligen Megahertz-Bereich, was für einige Anwendungen bereits nicht mehr ausreicht. Als Alternative bietet sich die Implementierung von entsprechend geeigneten Datenverarbeitungsschritten in Hardware auf einem qualifizierten SRAM-basierten FPGA an. Geeignete Bausteine sind jedoch empfindlich gegenüber der Strahlungsumgebung im Weltraum. Am Institut für Datentechnik und Kommunikationsnetze wurde eine fehlertolerante netzwerk-basierte Kommunikationsarchitektur entwickelt, die innerhalb eines geeigneten SRAM-basierten FPGAs Datenverarbeitungsmodule miteinander nach Bedarf zu Verarbeitungsketten verbindet, sowie den Austausch von einzelnen Modulen im Betrieb ermöglicht. Nicht oder nur partiell SEU mitigierte Module sollen bei strahlungsbedingten Fehlern im Modul durch das Protokoll und die Fehlererkennungsmechanismen der Kommunikationsarchitektur isoliert werden, um ein Ausbreiten des Fehlers im restlichen System-on-Chip zu verhindern. Im Kontext einer ESA Studie wurde diese Kommunikationsarchitektur um Komponenten erweitert und auf einer repräsentativen Hardwareplattform umgesetzt. Basierend auf den gesammelten Erfahrungen aus der Studie, wird in dieser Arbeit eine Analyse der tatsächlichen Fehlertoleranz-Eigenschaften sowie der Schwachstellen dieser ursprünglichen Implementierung durchgeführt. Die Kommunikationsarchitektur wurde an geeigneten Stellen um Fehlerdetektierungs- und Fehlerunterscheidungsmöglichkeiten erweitert, sowie um eine hardwarebasierte Überwachung ergänzt. Sowohl diese Maßnahmen, als auch die Erweiterung der Hardwareplattform um gezielte Fehlerinjektions-Möglichkeiten zum Emulieren von strahlungsinduzierten Fehlern in kritischen Komponenten eines nicht SEU mitigierten Prozessierungsmoduls werden genutzt, um die tatsächlichen auftretenden Effekte in der Kommunikationsarchitektur zu evaluieren. Anhand der Ergebnisse werden weitere Verbesserungsmaßnahmen speziell zur schnellen Detektierung und Isolation von fehlerhaften Knoten erarbeitet, selektiv implementiert und verifiziert. Insbesondere die Fähigkeit, fehlerhafte, nicht SEU mitigierte Netzwerkknoten innerhalb der Kommunikationsarchitektur zu isolieren, konnte dabei deutlich verbessert werden

    Virtual Runtime Application Partitions for Resource Management in Massively Parallel Architectures

    Get PDF
    This thesis presents a novel design paradigm, called Virtual Runtime Application Partitions (VRAP), to judiciously utilize the on-chip resources. As the dark silicon era approaches, where the power considerations will allow only a fraction chip to be powered on, judicious resource management will become a key consideration in future designs. Most of the works on resource management treat only the physical components (i.e. computation, communication, and memory blocks) as resources and manipulate the component to application mapping to optimize various parameters (e.g. energy efficiency). To further enhance the optimization potential, in addition to the physical resources we propose to manipulate abstract resources (i.e. voltage/frequency operating point, the fault-tolerance strength, the degree of parallelism, and the configuration architecture). The proposed framework (i.e. VRAP) encapsulates methods, algorithms, and hardware blocks to provide each application with the abstract resources tailored to its needs. To test the efficacy of this concept, we have developed three distinct self adaptive environments: (i) Private Operating Environment (POE), (ii) Private Reliability Environment (PRE), and (iii) Private Configuration Environment (PCE) that collectively ensure that each application meets its deadlines using minimal platform resources. In this work several novel architectural enhancements, algorithms and policies are presented to realize the virtual runtime application partitions efficiently. Considering the future design trends, we have chosen Coarse Grained Reconfigurable Architectures (CGRAs) and Network on Chips (NoCs) to test the feasibility of our approach. Specifically, we have chosen Dynamically Reconfigurable Resource Array (DRRA) and McNoC as the representative CGRA and NoC platforms. The proposed techniques are compared and evaluated using a variety of quantitative experiments. Synthesis and simulation results demonstrate VRAP significantly enhances the energy and power efficiency compared to state of the art.Siirretty Doriast

    Cross-layer fault tolerance in networks-on-chip

    Get PDF
    The design of Networks-on-Chip follows the Open Systems Interconnection (OSI) reference model. The OSI model defines strictly separated network abstraction layers and specifies their functionality. Each layer has layer-specific information about the network that can be exclusively accessed by the methods of the layer. Adhering to the strict layer boundaries, however, leads to methods of the individual layers working in isolation from each other. This lack of interaction between methods is disadvantageous for fault diagnosis and fault tolerance in Networks-on-Chip as it results in solutions that have a high effort in terms of the time and implementation costs required to deal with faults. For Networks-on-Chip cross-layer design is considered as a promising method to remedy these shortcomings. It removes the strict layer boundaries by the exchange of information between layers. This interaction enables methods of different layers to cooperate, and thus, deal with faults more efficiently. Furthermore, providing lower layer information to the software allows hardware methods to be implemented as software tasks resulting in a reduction of the hardware complexity. The goal of this dissertation is the investigation of cross-layer design for fault diagnosis and fault tolerance in Networks-on-Chip. For fault diagnosis a scheme is proposed that allows the interaction of protocol-based diagnosis of the transport layer with functional diagnosis of the network layer and structural diagnosis of the physical layer by exchanging diagnostic information. The techniques use this information for optimizing their own diagnosis process. For protocol-based diagnosis on the transport layer, a diagnosis protocol is proposed that is able to locate faulty links, switches, and crossbar connections. For this purpose, the technique utilizes available information of lower layers. As proof of concept for the proposed interaction scheme, the diagnosis protocol is combined with a functional and a structural diagnosis approach and the performance and diagnosis quality of the resulting combinations is investigated. The results show that the combinations of the diagnosis protocol with one of the lower layer techniques have a considerably reduced fault localization latency compared to the functional and the structural standalone techniques. This reduction, however, comes at the expense of a reduced diagnosis quality. In terms of fault tolerance, the focus of this dissertation is on the design and implementation of cross-layer approaches utilizing software methods to provide fault tolerance for network layer routings. Two approaches for different routings are presented. The requirements to provide information of lower layers to the software using the available Network-on-Chip resources and interfaces for data communication are discussed. The concepts of two mechanisms of the data link layer are presented for converting status information into communicable units and for preventing communication resources from being blocked. In the first approach, software-based packet rerouting is proposed. By incorporating information from different layers, this approach provides fault tolerance for deterministic network layer routings. As specialization of software-based rerouting, dimension-order XY rerouting is presented. In the second approach, a reconfigurable routing for Networks-on-Chip with logical hierarchy is proposed in which cross-layer interaction is used to enable hierarchical units to manage themselves autonomously and to reconfigure the routing. Both approaches are evaluated regarding their performance as well as their implementation costs. In a final study, the cross-layer diagnosis technique and cross-layer fault tolerance approaches are combined. The information obtained by the diagnosis technique is used by the fault tolerance approaches for packet rerouting or for routing reconfiguration. The combinations are evaluated regarding their impact on Networks-on-Chip performance. The results show that the crosslayer information exchange with software has a considerable impact on performance when the amount of information becomes too large. In case of crosslayer diagnosis, however, the impact on Networks-on-Chip performance is significantly lower compared to functional and structural diagnosis

    Structural Software-Based Self-Test of Network-on-Chip

    Full text link
    Abstract—Software-Based Self-Test (SBST) is extended to the switches of complex Network-on-Chips (NoC). Test patterns for structural faults are turned into valid packets by using satisfiability (SAT) solvers. The test technique provides a high fault coverage for both manufacturing test and online test

    Methodologies and Toolflows for the Predictable Design of Reliable and Low-Power NoCs

    Get PDF
    There is today the unmistakable need to evolve design methodologies and tool ows for Network-on-Chip based embedded systems. In particular, the quest for low-power requirements is nowadays a more-than-ever urgent dilemma. Modern circuits feature billion of transistors, and neither power management techniques nor batteries capacity are able to endure the increasingly higher integration capability of digital devices. Besides, power concerns come together with modern nanoscale silicon technology design issues. On one hand, system failure rates are expected to increase exponentially at every technology node when integrated circuit wear-out failure mechanisms are not compensated for. However, error detection and/or correction mechanisms have a non-negligible impact on the network power. On the other hand, to meet the stringent time-to-market deadlines, the design cycle of such a distributed and heterogeneous architecture must not be prolonged by unnecessary design iterations. Overall, there is a clear need to better discriminate reliability strategies and interconnect topology solutions upfront, by ranking designs based on power metric. In this thesis, we tackle this challenge by proposing power-aware design technologies. Finally, we take into account the most aggressive and disruptive methodology for embedded systems with ultra-low power constraints, by migrating NoC basic building blocks to asynchronous (or clockless) design style. We deal with this challenge delivering a standard cell design methodology and mainstream CAD tool ows, in this way partially relaxing the requirement of using asynchronous blocks only as hard macros
    • …
    corecore