15,460 research outputs found

    Individual Fairness in Hindsight

    Full text link
    Since many critical decisions impacting human lives are increasingly being made by algorithms, it is important to ensure that the treatment of individuals under such algorithms is demonstrably fair under reasonable notions of fairness. One compelling notion proposed in the literature is that of individual fairness (IF), which advocates that similar individuals should be treated similarly (Dwork et al. 2012). Originally proposed for offline decisions, this notion does not, however, account for temporal considerations relevant for online decision-making. In this paper, we extend the notion of IF to account for the time at which a decision is made, in settings where there exists a notion of conduciveness of decisions as perceived by the affected individuals. We introduce two definitions: (i) fairness-across-time (FT) and (ii) fairness-in-hindsight (FH). FT is the simplest temporal extension of IF where treatment of individuals is required to be individually fair relative to the past as well as future, while in FH, we require a one-sided notion of individual fairness that is defined relative to only the past decisions. We show that these two definitions can have drastically different implications in the setting where the principal needs to learn the utility model. Linear regret relative to optimal individually fair decisions is inevitable under FT for non-trivial examples. On the other hand, we design a new algorithm: Cautious Fair Exploration (CaFE), which satisfies FH and achieves sub-linear regret guarantees for a broad range of settings. We characterize lower bounds showing that these guarantees are order-optimal in the worst case. FH can thus be embedded as a primary safeguard against unfair discrimination in algorithmic deployments, without hindering the ability to take good decisions in the long-run

    Operationalizing Individual Fairness with Pairwise Fair Representations

    No full text
    We revisit the notion of individual fairness proposed by Dwork et al. A central challenge in operationalizing their approach is the difficulty in eliciting a human specification of a similarity metric. In this paper, we propose an operationalization of individual fairness that does not rely on a human specification of a distance metric. Instead, we propose novel approaches to elicit and leverage side-information on equally deserving individuals to counter subordination between social groups. We model this knowledge as a fairness graph, and learn a unified Pairwise Fair Representation (PFR) of the data that captures both data-driven similarity between individuals and the pairwise side-information in fairness graph. We elicit fairness judgments from a variety of sources, including human judgments for two real-world datasets on recidivism prediction (COMPAS) and violent neighborhood prediction (Crime & Communities). Our experiments show that the PFR model for operationalizing individual fairness is practically viable.Comment: To be published in the proceedings of the VLDB Endowment, Vol. 13, Issue.
    • …
    corecore