70,364 research outputs found

    Computation Offloading in Beyond 5G Networks: A Distributed Learning Framework and Applications

    Full text link
    Facing the trend of merging wireless communications and multi-access edge computing (MEC), this article studies computation offloading in the beyond fifth-generation networks. To address the technical challenges originating from the uncertainties and the sharing of limited resource in an MEC system, we formulate the computation offloading problem as a multi-agent Markov decision process, for which a distributed learning framework is proposed. We present a case study on resource orchestration in computation offloading to showcase the potentials of an online distributed reinforcement learning algorithm developed under the proposed framework. Experimental results demonstrate that our learning algorithm outperforms the benchmark resource orchestration algorithms. Furthermore, we outline the research directions worth in-depth investigation to minimize the time cost, which is one of the main practical issues that prevent the implementation of the proposed distributed learning framework

    Mobile Edge Computing for Future Internet-of-Things

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.Integrating sensors, the Internet, and wireless systems, Internet-of-Things (IoT) provides a new paradigm of ubiquitous connectivity and pervasive intelligence. The key enabling technology underlying IoT is mobile edge computing (MEC), which is anticipated to realize and reap the promising benefits of IoT applications by placing various cloud resources, such as computing and storage resources closer to smart devices and objects. Challenges of designing efficient and scalable MEC platforms for future IoT arise from the physical limitations of computing and battery resources of IoT devices, heterogeneity of computing and wireless communication capabilities of IoT networks, large volume of data arrivals and massive number connections, and large-scale data storage and delivery across the edge network. To address these challenges, this thesis proposes four efficient and scalable task offloading and cooperative caching approaches are proposed. Firstly, for the multi-user single-cell MEC scenario, the base station (BS) can only have outdated knowledge of IoT device channel conditions due to the time-varying nature of practical wireless channels. To this end, a hybrid learning approach is proposed to optimize the real-time local processing and predictive computation offloading decisions in a distributed manner. Secondly, for the multi-user multi-cell MEC scenario, an energy-efficient resource management approach is developed based on distributed online learning to tackle the heterogeneity of computing and wireless transmission capabilities of edge servers and IoT devices. The proposed approach optimizes the decisions on task offloading, processing, and result delivery between edge servers and IoT devices to minimize the time-average energy consumption of MEC. Thirdly, for the computing resource allocation under large-scale network, a distributed online collaborative computing approach is proposed based on Lyapunov optimization for data analysis in IoT application to minimize the time-average energy consumption of network. Finally, for the storage resource allocation under large-scale network, a distributed IoT data delivery approach based on online learning is proposed for caching application in mobile applications. A new profitable cooperative region is established for every IoT data request admitted at an edge server, to avoid invalid request dispatching

    Wireless Communications in the Era of Big Data

    Full text link
    The rapidly growing wave of wireless data service is pushing against the boundary of our communication network's processing power. The pervasive and exponentially increasing data traffic present imminent challenges to all the aspects of the wireless system design, such as spectrum efficiency, computing capabilities and fronthaul/backhaul link capacity. In this article, we discuss the challenges and opportunities in the design of scalable wireless systems to embrace such a "bigdata" era. On one hand, we review the state-of-the-art networking architectures and signal processing techniques adaptable for managing the bigdata traffic in wireless networks. On the other hand, instead of viewing mobile bigdata as a unwanted burden, we introduce methods to capitalize from the vast data traffic, for building a bigdata-aware wireless network with better wireless service quality and new mobile applications. We highlight several promising future research directions for wireless communications in the mobile bigdata era.Comment: This article is accepted and to appear in IEEE Communications Magazin

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    Learning and Management for Internet-of-Things: Accounting for Adaptivity and Scalability

    Get PDF
    Internet-of-Things (IoT) envisions an intelligent infrastructure of networked smart devices offering task-specific monitoring and control services. The unique features of IoT include extreme heterogeneity, massive number of devices, and unpredictable dynamics partially due to human interaction. These call for foundational innovations in network design and management. Ideally, it should allow efficient adaptation to changing environments, and low-cost implementation scalable to massive number of devices, subject to stringent latency constraints. To this end, the overarching goal of this paper is to outline a unified framework for online learning and management policies in IoT through joint advances in communication, networking, learning, and optimization. From the network architecture vantage point, the unified framework leverages a promising fog architecture that enables smart devices to have proximity access to cloud functionalities at the network edge, along the cloud-to-things continuum. From the algorithmic perspective, key innovations target online approaches adaptive to different degrees of nonstationarity in IoT dynamics, and their scalable model-free implementation under limited feedback that motivates blind or bandit approaches. The proposed framework aspires to offer a stepping stone that leads to systematic designs and analysis of task-specific learning and management schemes for IoT, along with a host of new research directions to build on.Comment: Submitted on June 15 to Proceeding of IEEE Special Issue on Adaptive and Scalable Communication Network
    • …
    corecore