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Abstract

Undoubtedly, this century evolves in a world of interconnected entities, where the notion of
Internet-of-Things (IoT) plays a central role in the proliferation of linked devices and objects. In
this context, the present dissertation deals with large-scale networked systems including IoT that
consist of heterogeneous components, and can operate in unknown environments. The focus is on
the theoretical and algorithmic issues at the intersection of optimization, machine learning, and
networked systems. Specifically, the research objectives and innovative claims include:
(T1) Scalable distributed machine learning approaches for efficient IoT implementation; and,
(T2) Enhanced resource management policies for IoT by leveraging machine learning advances.

Conventional machine learning approaches require centralizing the users’ data on one machine
or in a data center. Considering the massive amount of IoT devices, centralized learning becomes
computationally intractable, and rises serious privacy concerns. The widespread consensus today
is that besides data centers at the cloud, future machine learning tasks have to be performed starting
from the network edge, namely mobile devices. The first contribution offers innovative distributed
learning methods tailored for heterogeneous IoT setups, and with reduced communication overhead.
The resultant distributed algorithm can afford provably reduced communication complexity in
distributed machine learning. From learning to control, reinforcement learning will play a critical
role in many complex IoT tasks such as autonomous vehicles. In this context, the thesis introduces
a distributed reinforcement learning approach featured with its high communication efficiency.

Optimally allocating computing and communication resources is a crucial task in IoT. The
second novelty pertains to learning-aided optimization tools tailored for resource management
tasks. To date, most resource management schemes are based on a pure optimization viewpoint
(e.g., the dual (sub)gradient method), which incurs suboptimal performance. From the vantage
point of IoT, the idea is to leverage the abundant historical data collected by devices, and formulate
the resource management problem as an empirical risk minimization task — a central topic in
machine learning research. By cross-fertilizing advances of optimization and learning theory, a
learn-and-adapt resource management framework is developed. An upshot of the second part is
its ability to account for the feedback-limited nature of tasks in IoT. Typically, solving resource
allocation problems necessitates knowledge of the models that map a resource variable to its cost
or utility. Targeting scenarios where models are not available, a model-free learning scheme is
developed in this thesis, along with its bandit version. These algorithms come with provable
performance guarantees, even when knowledge about the underlying systems is obtained only
through repeated interactions with the environment.

The overarching objective of this dissertation is to wed state-of-the-art optimization and

machine learning tools with the emerging IoT paradigm, in a way that they can inspire and

reinforce the development of each other, with the ultimate goal of benefiting daily life.
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Chapter 1

Introduction

1.1 Motivation and context

The past decade has witnessed a proliferation of connected devices and objects, where the no-

tion of Internet-of-Things (IoT) plays a central role in the envisioned technological advances.

Conceptually speaking, IoT foresees an intelligent network infrastructure with ubiquitous smart

devices - home automation, interactive healthcare, and self-driving connected vehicles, are typical

in IoT [7, 177]. Today, a number of IoT applications have already brought major benefits to many

aspects of our daily life. The current generation of IoT can already afford an increasing amount of

real-time automation, and thus intelligence toward the vision of real-time IoT. However, despite the

popularity of IoT, several critical challenges must be addressed before embracing its full potential

[151, 4]. To this end, we highlight three key challenges that are arguably expected to be at the

epicenter of emerging IoT research fields.

Extreme heterogeneity. The computational and communication capacities of connected devices

differ due to differences in hardware (e.g., CPU frequency), communication protocol (e.g., ZigBee,

WiFi), and energy availability (e.g., battery level) [176]. The tasks carried out on various devices

are often considerably diverse, e.g., motion sensors monitor human behavior in a smart home [102],

while cameras are responsible for recognizing a suspicious behavior in a crowded environment, or,

vehicle plates in a parking garage.

Unpredictable dynamics. Unlike many existing communication, computing and networking

platforms, the IoT dynamics can stem from multiple sources, where adaptivity is not only critical

but also essential in designing hardware and management protocols. Such sources entail human-in-

the-loop dynamics in addition to physical objects [102], demand response in energy systems [56],

1
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and intelligent automotive operations [101]. In these applications, IoT dynamics are intertwined

with or even partially determined by human behavior [113, 121, 47] - as such, high degree of

adaptivity in the algorithm and hardware design is needed.

Scalability at the core. IoT entails an intelligent network infrastructure with a massive number of

devices. It is estimated that by 2020, there will be more than 50 billion devices connected through

the Internet [54], which highlights scalability as a key challenge for IoT [151, 7]. Scalability is

not only about computational efficiency, but also about lower communication overhead (e.g., how

often a device needs to communicate with the remote cloud center), as well as reduced information

needed (e.g., what type of information a device needs before making sensible decisions).

Faced with these major IoT challenges, innovations in theoretical foundations and algorithmic

designs for machine learning and resource management tasks in IoT are desired to enable efficient

large-scale operations, and seamless co-existence of humans with things [38]. Consequently, it is

imperative to develop new tools for learning and management that tap into diverse inference, signal

processing, communications, and networking techniques, by drawing from fields such as machine

learning, and optimization. The novel expertise gleaned from these research areas, coupled with

solid analytical approaches, are the best credentials for succeeding in IoT research [151].

From a network architecture perspective, to ensure the desired user experience and meet

heterogeneous service requirements, IoT tasks nowadays are no longer solely supported by the

cloud data centers, but also through a promising new architecture termed edge computing. This

architecture distributes computation, communication, and storage closer to the end IoT devices and

users, along the cloud-to-things continuum [38, 9, 10, 105, 167, 103]. In this way, delay-sensitive

applications launched by a mobile device can be offloaded to the nearest mobile edge host, and the

most popular contents can also be cached to minimize downloading time [40, 39].

From the algorithmic design perspective, a large volume of data is being generated from

diverse IoT systems such as transportation, electric power, and computer networks, as well as the

future urban infrastructure with ubiquitous smart devices. At the same time, the proliferation of

optimization and machine learning advances motivates a systematic and efficient way to uncover

“hidden insights” through learning from historical relationships and trends in massive datasets

[164]. Learning from dynamic and large volumes of IoT data is expected to bring major science

and engineering advances along with consequent improvements in quality of human life [110, 30].
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1.2 Research overview

In this context, this dissertation is at the intersection of IoT, optimization, machine learning,

and networking. The research presented in this dissertation focuses on building fundamental

connections between methodologies from the optimization, machine learning and networking

communities, and developing inter-disciplinary approaches for IoT.

It contributes answers to the following two intertwined questions.

(Q1) How can we scale up machine learning approaches for efficient IoT implementation?

(Q2) How learning advances can be leveraged to enhance resource management for IoT?

The overarching objective is to wed state-of-the-art optimization and machine learning tools

with the emerging IoT paradigm, in a way that they can inspire and reinforce the development of

each other, with the ultimate goal of benefiting our daily life.

1.2.1 Scale up machine learning approaches for IoT

It is estimated that by 2020, there will be more than 50 billion devices connected through the

Internet. To tackle (Q1), it is evident that scalability and heterogeneity are two key challenges for

IoT [30]. Scalability is not only about computational efficiency, but also about communication

overhead of running learning algorithms at the network edge; while heterogeneity comes from

both the wide range of hardware devices, as well as the diversity of tasks offered by each device.

The first part of the dissertation, consisting of Chapters 2 and 3, will primarily tackle these issues.

• Federated learning at the network edge. Conventional machine learning approaches

require centralizing the users’ data on one machine or in a data center. Considering the massive

amount of IoT devices, centralized learning becomes computationally intractable, and rises serious

privacy concerns. To date, the widespread consensus is that besides data centers at the cloud,

future machine learning tasks have to be performed starting from the network edge, namely mobile

devices. This is the overarching goal of edge computing, also known as federated learning [109].

Towards this goal, this research is centered on reducing the communication overhead during the

federated learning processes [31], and enhancing the robustness of learning under adversarial

attacks [89]. Our learning method with adaptive communication mechanism [31] has been selected

as the spotlight presentation in NeurIPS, which establishes a provably reduced communication

complexity in federated learning. This part of research will be presented in Chapter 2. Challenges

of distributed learning also lie in asynchrony and delay introduced by e.g., IoT mobility and

heterogeneity. In this context, we have developed algorithms for delayed online learning that can
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be run asynchronously on edge devices; see our recent paper [87].

• Federated reinforcement learning over networked agents. From learning to control,

reinforcement learning (RL) will play a critical role in many complex IoT tasks. Popular RL

algorithms are originally developed for the single-agent tasks, but a number of IoT tasks such

as autonomous vehicles and coordination of unmanned aerial vehicles (UAV), involve multiple

agents operating in a distributed fashion. Today, a group of coordinated UAVs can perform

traffic control, food delivery, rescue and search tasks. To coordinate agents distributed over a

network however, information exchange is necessary, which requires frequent communication

among agents. For resource-limited devices (e.g., battery-powered UAVs), communication is

costly and the latency caused by frequent communication becomes the bottleneck of the overall

performance. In this context, we have studied the distributed RL (DRL) problem that covers

multi-agent collaborative RL and parallel RL. Generalizing theory and algorithms for supervised

learning, an exciting communication-efficient algorithm (LAPG) is developed for DRL [29], which

builds on the policy gradient (PG) method. Remarkably, the new DRL method can achieve the

same order of convergence rates as plain-vanilla policy gradient under standard conditions; and,

ii) reduce the communication rounds required to achieve a targeted learning accuracy, when the

distributed agents are heterogeneous. Results in this line of research have been presented as part

of a tutorial we delivered at MILCOM 2018, which will be presented in Chapter 3.

• Scalable function approximation with unknown dynamics. Function approximation

emerges at the core of machine learning tasks such as regression, classification, dimensionality re-

duction, as well as reinforcement learning. Kernel methods exhibit well-documented performance

in function approximation. However, the major challenges of implementing existing methods

to IoT come from two sources: i) the “curse” of dimensionality in kernel-based learning; and,

ii) the need to track time-varying functions with unknown dynamics. In this context, a scalable

multi-kernel learning scheme has been developed to obtain the sought nonlinear learning function

‘on the fly.’ To further boost performance in unknown environments, an adaptive learning scheme

has been introduced, which accounts for the unknown dynamics. So far, results in this direction

have appeared in [146] and [147].

1.2.2 Rethink resource management for IoT via learning

Optimally allocating limited computing and communication resources is a crucial task in IoT. The

focus of the second part in this dissertation, namely Chapters 4-6, is to tackle (Q2) by providing

affirmative answers to the following intermediate questions:
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(Q2a) can we learn from historical data to improve the existing resource management schemes;

(Q2b) can we develop resource management schemes when the underlying models are not known?

The key novelty here is innovative statistical and interactive learning tailored for resource

management tasks in IoT.

• Statistical learning viewpoint of resource management. To date, most resource manage-

ment schemes for IoT are based on a pure optimization viewpoint (e.g., the dual (sub)gradient

method), which incur large queueing delays and slow convergence. From the vantage point of IoT,

the fresh idea here is to leverage the abundant historical data collected by devices, and formulate

the resource management problem as an empirical risk minimization (ERM) — a central topic of

statistical machine learning research [164]. In this context, we have developed a fast convergent

algorithm. By cross-fertilizing advances of learning theory, we have also established the sample

complexity of learning a near-optimal resource management policy [26]. To boost performance in

dynamic settings, we further introduced a learn-and-adapt resource management framework [32]

that will be presented in Chapter 4, which capitalizes on the following features: (f1) it learns

from historical data using advanced statistical learning tools; and, (f2) it efficiently adapts to IoT

dynamics, and thus enables operational flexibility. Our proposed algorithms have been published

in top signal processing and network optimization journals [32, 26], where we have analytically

shown that this novel algorithmic design can provably improve the emerging performance tradeoff

by an order of magnitude. To demonstrate the impact of this work, we have applied it to mobile

computing and smart grid tasks [36, 88].

•Model-free resource management for edge computing. Typically, solving resource allo-

cation problems necessitates knowledge of the models that map a resource allocation decision to its

cost or utility; e.g., the model that maps transmit-power to the bit rate in communication systems.

However, such models may not be available in IoT, because i) the utility function capturing e.g.,

service latency or reliability in edge computing, can be hard to model; and, ii) even if modeling is

possible, IoT devices with limited resources may not afford the complexity of running sophisticated

inference algorithms. Hence, another important aspects investigated in this part of the thesis is the

feedback limited nature of resource allocation tasks in IoT. To account for physical constraints, we

have considerably generalized the interactive learning tools for unconstrained problems to solve

challenging constrained resource allocation problems [25]. Tailored for edge computing scenarios,

we further developed a model-free online learning scheme [25] that will be presented in Chapter
5, along with its bandit version [34] that will be presented in Chapter 6. These algorithms come

with provable performance guarantees, even when knowledge about the underlying system models
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can be obtained only through repeated interactions with the environment.

The dissertation is summarized, and interesting open problems are included in Chapter 7.

1.3 Notational conventions

The following notation will be used throughout the subsequent chapters. Lower- (upper-) case

boldface letters denote vectors (matrices). Calligraphic letters are reserved for sets, e.g., S . Symbol

> stands for matrix/vector transposition. For vectors, ‖·‖2 or ‖·‖ represents the Euclidean norm,

while ‖·‖0 denotes the `0 pseudo-norm counting the number of nonzero entries. The floor (ceiling)

operation bcc (dce) denotes the largest integer no greater (the smallest integer but no smaller)

than the given number c > 0; |S| counts the number of entries in S. Let N (µ,Σ) be the vector

Gaussian distribution with mean µ and covariance matrix Σ.



Chapter 2

Federated learning at the network edge

2.1 Introduction

In this paper, we develop communication-efficient algorithms to solve the following problem

min
θ∈Rd

L(θ) with L(θ) :=
∑
m∈M

Lm(θ) (2.1)

where θ ∈ Rd is the unknown vector, L and {Lm,m∈M} are smooth (but not necessarily convex)

functions withM := {1, . . . ,M}. Problem (2.1) naturally arises in a number of areas, such as

multi-agent optimization [115], distributed signal processing [57, 136], and distributed machine

learning [44]. Considering the distributed machine learning paradigm, each Lm is also a sum of

functions, e.g., Lm(θ) :=
∑

n∈Nm`n(θ), where `n is the loss function (e.g., square or the logistic

loss) with respect to the vector θ (describing the model) evaluated at the training sample xn; that is,

`n(θ) := `(θ; xn). While machine learning tasks are traditionally carried out at a single server, for

datasets with massive samples {xn}, running gradient-based iterative algorithms at a single server

can be prohibitively slow; e.g., the server needs to sequentially compute gradient components

given limited processors. A simple yet popular solution in recent years is to parallelize the training

across multiple computing units (a.k.a. workers) [44]. Specifically, assuming batch samples

distributedly stored in a total of M workers with the worker m ∈ M associated with samples

{xn, n ∈ Nm}, a globally shared model θ will be updated at the central server by aggregating

gradients computed by workers. Due to bandwidth and privacy concerns, each worker m will

not upload its data {xn, n ∈ Nm} to the server, thus the learning task needs to be performed by

iteratively communicating with the server.

7
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We are particularly interested in the scenarios where communication between the central server

and the local workers is costly, as is the case with the Federated Learning paradigm [109, 150], and

the cloud-edge AI systems [153]. In those cases, communication latency is the bottleneck of overall

performance. More precisely, the communication latency is a result of initiating communication

links, queueing and propagating the message. For sending small messages, e.g., the d-dimensional

model θ or aggregated gradient, this latency dominates the message size-dependent transmission

latency. Therefore, it is important to reduce the number of communication rounds, even more

so than the bits per round. In short, our goal is to find θ that minimizes (2.1) using as low

communication overhead as possible.

2.1.1 Prior art

To put our work in context, we review prior contributions that we group in two categories.

Large-scale machine learning. Solving (2.1) at a single server has been extensively studied for

large-scale learning tasks, where the “workhorse approach” is the simple yet efficient stochastic

gradient descent (SGD) [131, 18, 19]. For learning beyond a single server, distributed parallel

machine learning is an attractive solution to tackle large-scale learning tasks, where the parameter

server architecture is the most commonly used one [44, 91]. Different from the single server

case, parallel implementation of the batch gradient descent (GD) is a popular choice, since SGD

that has low complexity per iteration requires a large number of iterations thus communication

rounds [110]. For traditional parallel learning algorithms however, latency, bandwidth limits,

and unexpected drain on resources, that delay the update of even a single worker will slow

down the entire system operation. Recent research efforts in this line have been centered on

understanding asynchronous-parallel algorithms to speed up machine learning by eliminating

costly synchronization; e.g., [23, 156, 126, 129, 96].

Communication-efficient learning. Going beyond single-server learning, the high communica-

tion overhead becomes the bottleneck of the overall system performance [110]. Communication-

efficient learning algorithms have gained popularity [73, 182]. Distributed learning approaches

have been developed based on quantized (gradient) information, e.g., [157], but they only reduce

the required bandwidth per communication, not the rounds. For machine learning tasks where

the loss function is convex and its conjugate dual is expressible, the dual coordinate ascent-based

approaches have been demonstrated to yield impressive empirical performance [150, 72, 104].

But these algorithms run in a double-loop manner, and the communication reduction has not
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been formally quantified. To reduce communication by accelerating convergence, approaches

leveraging (inexact) second-order information have been studied in [144, 183]. Roughly speaking,

algorithms in [150, 72, 104, 144, 183] reduce communication by increasing local computation

(relative to GD), while our method does not increase local computation. In settings different from

the one considered in this paper, communication-efficient approaches have been recently studied

with triggered communication protocols [98, 83]. Except for convergence guarantees however,

no theoretical justification for communication reduction has been established in [98]. While a

sublinear convergence rate can be achieved by algorithms in [83], the proposed gradient selection

rule is nonadaptive and requires double-loop iterations.

2.1.2 Our contributions

Before introducing our approach, we revisit the popular GD method for (2.1) in the setting of one

parameter server and M workers: At iteration k, the server broadcasts the current model θk to all

the workers; every worker m ∈ M computes ∇Lm
(
θk
)

and uploads it to the server; and once

receiving gradients from all workers, the server updates the model parameters via

GD iteration θk+1 = θk − α∇kGD with ∇kGD :=
∑
m∈M

∇Lm
(
θk
)

(2.2)

where α is a stepsize, and∇kGD is an aggregated gradient that summarizes the model change. To

implement (2.2), the server has to communicate with all workers to obtain fresh {∇Lm
(
θk
)
}.

In this context, the present paper puts forward a new batch gradient method (as simple as

GD) that can skip communication at certain rounds, which justifies the term Lazily Aggregated

Gradient (LAG). With its derivations deferred to Section 2.2, LAG resembles (2.2), given by

LAG iteration θk+1 = θk − α∇k with ∇k :=
∑
m∈M

∇Lm
(
θ̂km
)

(2.3)

where each∇Lm(θ̂km) is either∇Lm(θk), when θ̂km = θk, or an outdated gradient that has been

computed using an old copy θ̂km 6= θk. Instead of requesting fresh gradient from every worker in

(2.2), the twist is to obtain∇k by refining the previous aggregated gradient∇k−1; that is, using

only the new gradients from the selected workers inMk, while reusing the outdated gradients

from the rest of workers. Therefore, with θ̂km :=θk, ∀m∈Mk, θ̂km := θ̂k−1
m , ∀m /∈Mk, LAG in
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Parameter 

Server (PS)

Workers

Figure 2.1: LAG for distributed machine learning in a parameter server setup.

(2.3) is equivalent to

LAG iteration θk+1 = θk − α∇k with ∇k=∇k−1+
∑

m∈Mk

δ∇km (2.4)

where δ∇km := ∇Lm(θk)−∇Lm(θ̂k−1
m ) is the difference between two evaluations of∇Lm at the

current iterate θk and the old copy θ̂k−1
m . If∇k−1 is stored in the server, this simple modification

scales down the number of communication rounds from GD’s M to LAG’s |Mk|.
We develop two different rules to selectMk. The first rule is adopted by the parameter server

(PS), and the second one by every worker (WK). At iteration k,

LAG-PS: the server determinesMk and sends θk to the workers inMk; each worker m∈Mk

computes ∇Lm(θk) and uploads δ∇km; workers inMk do nothing; the server updates via (2.4);

LAG-WK: the server broadcasts θk to all workers; every worker computes∇Lm(θk), and checks

if it belongs toMk; only the workers inMk upload δ∇km; the server updates via (2.4).

See a comparison of two LAG variants with GD in Table 2.1.

Naively reusing outdated gradients, while saving communication per iteration, can increase

the total number of iterations. To keep this number in control, we judiciously design our simple

trigger rules so that LAG can: i) achieve the same order of convergence rates (thus iteration

complexities) as batch GD under strongly-convex, convex, and nonconvex smooth cases; and,

ii) require reduced communication to achieve a targeted learning accuracy, when the distributed

datasets are heterogeneous (measured by certain quantity specified later). In certain learning

settings, LAG requires only O(1/M) communication of GD. Empirically, we found that LAG

can reduce the communication required by GD and other distributed parallel learning methods by
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Metric Communication Computation Memory
Algorithm PS→WK m WK m→PS PS WK m PS WK m

GD θk ∇Lm (2.2) ∇Lm θk /

LAG-PS θk, if m∈Mk δ∇km, if m∈Mk (2.4), (2.15b) ∇Lm, if m∈Mk θk,∇k, {θ̂km} ∇Lm(θ̂km)

LAG-WK θk δ∇km, if m∈Mk (2.4) ∇Lm, (2.15a) θk,∇k ∇Lm(θ̂km)

Table 2.1: A comparison of communication, computation and memory requirements. PS denotes
the parameter server, WK denotes the worker, PS→WK m is the communication link from the
server to worker m, and WK m→ PS is the communication link from worker m to the server.

several orders of magnitude.

Notation. Bold lowercase letters denote column vectors, which are transposed by (·)>. And ‖x‖
denotes the `2-norm of x. Inequalities for vectors x > 0 is defined entrywise.

2.2 LAG: Lazily aggregated gradient approach

In this section, we formally develop our LAG method, and present the intuition and basic principles

behind its design. The original idea of LAG comes from a simple rewriting of the GD iteration

(2.2) as

θk+1 = θk − α
∑
m∈M

∇Lm(θk−1)− α
∑
m∈M

(
∇Lm

(
θk
)
−∇Lm

(
θk−1

))
. (2.5)

Let us view ∇Lm(θk)−∇Lm(θk−1) as a refinement to ∇Lm(θk−1), and recall that obtaining

this refinement requires a round of communication between the server and the worker m. There-

fore, to save communication, we can skip the server’s communication with the worker m if

this refinement is small compared to the old gradient; that is, ‖∇Lm(θk) − ∇Lm(θk−1)‖ �
‖∑m∈M∇Lm(θk−1)‖.

Generalizing on this intuition, given the generic outdated gradient components {∇Lm(θ̂k−1
m )}

with θ̂k−1
m =θk−1−τk−1

m
m for a certain τk−1

m ≥0, if communicating with some workers will bring only

small gradient refinements, we skip those communications (contained in setMk
c ) and end up with

θk+1 = θk − α
∑
m∈M

∇Lm
(
θ̂k−1
m

)
− α

∑
m∈Mk

(
∇Lm

(
θk
)
−∇Lm

(
θ̂k−1
m

))
(2.6a)

= θk − α∇L(θk)− α
∑

m∈Mk
c

(
∇Lm

(
θ̂k−1
m

)
−∇Lm

(
θk
))

(2.6b)
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where Mk and Mk
c are the sets of workers that do and do not communicate with the server,

respectively. It is easy to verify that (2.6) is identical to (2.3) and (2.4). Comparing (2.2) with

(2.6b), whenMk
c includes more workers, more communication is saved, but θk is updated by a

coarser gradient.

Key to addressing this communication vs accuracy tradeoff is a principled criterion to select

a subset of workersMk
c that do not communicate with the server at each round. To achieve this

“sweet spot,” we will rely on the fundamental descent lemma. For GD, it is given as follows [119].

Lemma 1 (GD descent in objective). Suppose L(θ) is L-smooth, and θ̄k+1 is generated by

running one-step GD iteration (2.2) given θk and stepsize α. Then the objective values satisfy

L(θ̄k+1)− L(θk) ≤ −
(
α− α2L

2

)
‖∇L(θk)‖2 := ∆k

GD(θk). (2.7)

Likewise, for our wanted iteration (2.6), the following holds; its proof is given in the Supple-

ment.

Lemma 2 (LAG descent in objective). Suppose L(θ) is L-smooth, and θk+1 is generated by

running one-step LAG iteration (2.4) given θk. The objective values satisfy (cf. δ∇km in (2.4))

L(θk+1)−L(θk) ≤−α
2

∥∥∥∇L(θk)
∥∥∥2 +

α

2

∥∥∥ ∑
m∈Mk

c

δ∇km
∥∥∥2+

(
L

2
− 1

2α

)∥∥∥θk+1−θk
∥∥∥2:=∆k

LAG(θk). (2.8)

Lemmas 1 and 2 estimate the objective value descent by performing one-iteration of the GD

and LAG methods, respectively, conditioned on a common iterate θk. GD finds ∆k
GD(θk) by

performing M rounds of communication with all the workers, while LAG yields ∆k
LAG(θk) by

performing only |Mk| rounds of communication with a selected subset of workers. Our pursuit is

to selectMk to ensure that LAG enjoys larger per-communication descent than GD; that is

∆k
LAG(θk)

|Mk| ≤ ∆k
GD(θk)

M
. (2.9)

If we choose the standard α = 1/L in Lemmas 1 and 2, it follows that

∆k
GD(θk) := − 1

2L

∥∥∥∇L(θk)
∥∥∥2

∆k
LAG(θk) := − 1

2L

∥∥∥∇L(θk)
∥∥∥2

+
1

2L

∥∥∥∥∥ ∑
m∈Mk

c

(
∇Lm

(
θ̂k−1
m

)
−∇Lm

(
θk
))∥∥∥∥∥

2

.

(2.10a)

(2.10b)
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Plugging (2.10) into (2.9), and rearranging terms, (2.9) is equivalent to∥∥∥∥∥ ∑
m∈Mk

c

(
∇Lm

(
θ̂k−1
m

)
−∇Lm

(
θk
))∥∥∥∥∥

2

≤
∣∣∣Mk

c

∣∣∣ ∥∥∥∇L(θk)
∥∥∥2/

M. (2.11)

Note that since we have∥∥∥∥∥ ∑
m∈Mk

c

(
∇Lm

(
θ̂k−1
m

)
−∇Lm

(
θk
))∥∥∥∥∥

2

≤
∣∣∣Mk

c

∣∣∣ ∑
m∈Mk

c

∥∥∥∇Lm(θ̂k−1
m

)
−∇Lm

(
θk
)∥∥∥2

(2.12)

if we can further show that∥∥∥∇Lm(θ̂k−1
m

)
−∇Lm

(
θk
)∥∥∥2
≤
∥∥∥∇L(θk)

∥∥∥2/
M2, ∀m ∈Mk

c . (2.13)

then we can prove that (2.11) holds thus (2.9) also holds.

However, directly checking (2.13) at each worker is expensive since i) obtaining ‖∇L(θk)‖2

requires information from all the workers; and ii) each worker does not knowMk
c . Instead, we

approximate ‖∇L(θk)‖2 in (2.13) by

∥∥∥∇L(θk)
∥∥∥2
≈ 1

α2

D∑
d=1

ξd

∥∥∥θk+1−d − θk−d
∥∥∥2

(2.14)

where {ξd}Dd=1 are constant weights. The rationale here is that, as L is smooth,∇L(θk) cannot be

very different from the recent gradients or the recent iterate lags.

Building upon (2.13) and (2.14), we will include worker m inMk
c of (2.6) if it satisfies

LAG-WK condition
∥∥∥∇Lm(θ̂k−1

m )−∇Lm(θk)
∥∥∥2
≤ 1

α2M2

D∑
d=1

ξd

∥∥∥θk+1−d−θk−d
∥∥∥2
.

(2.15a)

Condition (2.15a) is checked at the worker side after each worker receives θk from the server and

computes its ∇Lm(θk). If broadcasting is also costly, we can resort to the following server side

rule:

LAG-PS condition L2
m

∥∥∥θ̂k−1
m − θk

∥∥∥2
≤ 1

α2M2

D∑
d=1

ξd

∥∥∥θk+1−d − θk−d
∥∥∥2
. (2.15b)
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Algorithm 1 LAG-WK
1: Input: Stepsize α > 0, and {ξd}.
2: Initialize: θ1, {∇Lm(θ̂0m), ∀m}.
3: for k = 1, 2, . . . ,K do
4: Server broadcasts θk to all workers.
5: for worker m = 1, . . . ,M do
6: Worker m computes ∇Lm(θk).
7: Worker m checks condition (2.15a).
8: if worker m violates (2.15a) then
9: Worker m uploads δ∇km.

10: . Save∇Lm(θ̂km) = ∇Lm(θk)
11: else
12: Worker m uploads nothing.
13: end if
14: end for
15: Server updates via (2.4).
16: end for

Algorithm 2 LAG-PS
1: Input: Stepsize α > 0, {ξd}, and Lm, ∀m.
2: Initialize: θ1, {θ̂0m,∇Lm(θ̂0m),∀m}.
3: for k = 1, 2, . . . ,K do
4: for worker m = 1, . . . ,M do
5: Server checks condition (2.15b).
6: if worker m violates (2.15b) then
7: Server sends θk to worker m.
8: . Save θ̂km = θk at server
9: Worker m computes ∇Lm(θk).

10: Worker m uploads δ∇km.
11: else
12: No actions at server and worker m.
13: end if
14: end for
15: Server updates via (2.4).
16: end for

Table 2.2: A comparison of LAG-WK and LAG-PS.

The values of {ξd} and D admit simple choices, e.g., ξd = 1/D, ∀d with D = 10 used in the

simulations.

LAG-WK vs LAG-PS. To perform (2.15a), the server needs to broadcast the current model θk,

and all the workers need to compute the gradient; while performing (2.15b), the server needs the

estimated smoothness constant Lm for all the local functions. On the other hand, as it will be

shown in Section 2.3, (2.15a) and (2.15b) lead to the same worst-case convergence guarantees.

In practice, however, the server-side condition is more conservative than the worker-side one at

communication reduction, because the smoothness of Lm readily implies that satisfying (2.15b)

will necessarily satisfy (2.15a), but not vice versa. Empirically, (2.15a) will lead to a largerMk
c

than that of (2.15b), and thus extra communication overhead will be saved. Hence, (2.15a) and

(2.15b) can be chosen according to users’ preferences. LAG-WK and LAG-PS are summarized as

Algorithms 1 and 2.

Regarding our proposed LAG method, two remarks are in order.

R1) With recursive update of the lagged gradients in (2.4) and the lagged iterates in (2.15),

implementing LAG is as simple as GD; see Table 2.1. Both empirically and theoretically, we will

further demonstrate that using lagged gradients even reduces the overall delay by cutting down

costly communication.

R2) Compared with existing efforts for communication-efficient learning such as quantized
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gradient, Nesterov’s acceleration, dual coordinate ascent and second-order methods, LAG is not

orthogonal to all of them. Instead, LAG can be combined with these methods to develop even more

powerful learning schemes. Extension to the proximal LAG is also possible to cover nonsmooth

regularizers.

2.3 Iteration and communication complexity

In this section, we establish the convergence of LAG, under the following standard conditions.

Assumption 1: Loss function Lm(θ) is Lm-smooth, and L(θ) is L-smooth.

Assumption 2: L(θ) is convex and coercive.

Assumption 3: L(θ) is µ-strongly convex, or generally, satisfies the Polyak-Łojasiewicz (PL)

condition with the constant µ; that is, 2µ(L(θk)− L(θ∗)) ≤ ‖∇L(θk)‖2.

Note that the PL condition in Assumption 3 is strictly weaker than the strongly convexity (or

even convexity), and it is satisfied by a wider range of machine learning problems such as least

squares for underdetermined linear systems and logistic regression; see details in [77]. While

the PL condition is sufficient for the subsequent linear convergence analysis, we will still use the

strong convexity for the ease of understanding by a wide audience.

The subsequent analysis critically builds on the following Lyapunov function:

Vk := L(θk)− L(θ∗) +
D∑
d=1

βd

∥∥∥θk+1−d − θk−d
∥∥∥2

(2.16)

where θ∗ is the minimizer of (2.1), and {βd} are constants that will be determined later.

We will start with the sufficient descent of our Vk in (2.16).

Lemma 3 (descent lemma). Under Assumption 1, if α and {ξd} are chosen properly, there exist

constants c0, · · · , cD ≥ 0 such that the Lyapunov function in (2.16) satisfies

Vk+1 − Vk ≤ −c0

∥∥∥∇L(θk)
∥∥∥2
−

D∑
d=1

cd

∥∥∥θk+1−d−θk−d
∥∥∥2

(2.17)

which implies the descent in our Lyapunov function, that is, Vk+1 ≤ Vk.

Lemma 3 is a generalization of GD’s descent lemma. As specified in the supplementary

material, under properly chosen {ξd}, the stepsize α ∈ (0, 2/L) including α = 1/L guarantees
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(2.17), matching the stepsize region of GD. WithMk =M and βd = 0, ∀d in (2.16), Lemma 3

reduces to Lemma 1.

2.3.1 Convergence in strongly convex case

We first present the convergence under the smooth and strongly convex condition.

Theorem 1 (strongly convex case). Under Assumptions 1 and 3, the iterates {θk} generated by

LAG-WK or LAG-PS satisfy

L
(
θK
)
− L

(
θ∗
)
≤
(
1− c(α; {ξd})

)K
V0 (2.18)

where θ∗ is the minimizer of L(θ) in (2.1), and c(α; {ξd}) ∈ (0, 1) is a constant depending on

α, {ξd} and {βd} as well as the condition number κ := L/µ that are specified in the supplemen-

tary material.

Iteration complexity. The iteration complexity in its generic form is complicated since c(α; {ξd})
depends on the choice of several parameters. Specifically, if we choose the parameters as follows

ξ1 = · · · = ξD := ξ <
1

D
, α :=

1−√Dξ
L

, β1 = · · · = βD :=
D − d+ 1

2α
√
D/ξ

(2.19)

then, following Theorem 1, the iteration complexity of LAG in this case is

ILAG(ε) =
κ

1−√Dξ log
(
ε−1
)
. (2.20)

The iteration complexity in (2.20) is on the same order of GD’s iteration complexity κ log(ε−1),

but has a worse constant. This is the consequence of using a smaller stepsize in (2.19) (relative

to α = 1/L in GD) to simplify the choice of other parameters. Empirically, LAG with α = 1/L

can achieve almost the same empirical iteration complexity as GD; see Section 2.4. Building on

the iteration complexity, we study next the communication complexity of LAG. In the setting of

our interest, we define the communication complexity as the total number of uploads over all the

workers needed to achieve accuracy ε. While the accuracy refers to the objective optimality error

in the strongly convex case, it is considered as the gradient norm in general (non)convex cases.

The power of LAG is best illustrated by numerical examples; see an example of LAG-WK in

Figure 2.2. Clearly, workers with a small smoothness constant communicate with the server less

frequently. This intuition will be formally treated in the next lemma.
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Figure 2.2: Communication events of workers 1, 3, 5, 7, 9 over 1, 000 iterations. Each stick is an
upload. An example with L1 < . . . < L9.

Lemma 4 (lazy communication). Define the importance factor of every worker m asH(m) :=

Lm/L. If the stepsize α and the constants {ξd} in (2.15) satisfy ξD ≤ · · · ≤ ξd ≤ · · · ≤ ξ1 and

worker m satisfies

H2(m) ≤ ξd
/

(dα2L2M2) := γd (2.21)

then, until iteration k, worker m communicates with the server at most k/(d+ 1) rounds.

Lemma 4 asserts that if the worker m has a small Lm (a close-to-linear loss function) such that

H2(m) ≤ γd, then under LAG, it only communicates with the server at most k/(d+ 1) rounds.

This is in contrast to the total of k communication rounds involved per worker under GD. Ideally,

we want as many workers satisfying (2.21) as possible, especially when d is large.

To quantify the overall communication reduction, we will rely on what we term the hetero-
geneity score function, given by

h(γ) :=
1

M

∑
m∈M

1(H2(m) ≤ γ) (2.22)

where the indicator 1 equals 1 whenH2(m) ≤ γ holds, and 0 otherwise. Clearly, h(γ) is a nonde-

creasing function of γ, that depends on the distribution of smoothness constants L1, L2, . . . , LM .

It is also instructive to view it as the cumulative distribution function of the deterministic quantity

H2(m), implying h(γ) ∈ [0, 1]. Putting it in our context, the critical quantity h(γd) lower bounds

the fraction of workers that communicate with the server at most k/(d+ 1) rounds until the k-th

iteration.

We are now ready to present the communication complexity.



18

Proposition 1 (communication complexity). Under the same conditions as those in Theorem 1,

with γd defined in (2.21) and the function h(γ) defined in (2.22), the communication complexity of

LAG denoted as CLAG(ε) is bounded by

CLAG(ε) ≤
(

1−
D∑
d=1

(
1

d
− 1

d+ 1

)
h (γd)

)
M ILAG(ε) :=

(
1−∆C̄(h; {γd})

)
M ILAG(ε)

(2.23)

where the constant is defined as ∆C̄(h; {γd}) :=
∑D

d=1

(
1
d − 1

d+1

)
h (γd).

The communication complexity in (2.23) crucially depends on the iteration complexity ILAG(ε)

as well as what we call the fraction of reduced communication per iteration ∆C̄(h; {γd}).

Simply choosing the parameters as (2.19), it follows from (2.20) and (2.23) that (cf. γd =

ξ(1−√Dξ)−2M−2d−1)

CLAG(ε) ≤
(
1−∆C̄(h; ξ)

)
CGD(ε)

/(
1−

√
Dξ
)
. (2.24)

where the GD’s complexity is CGD(ε) = Mκ log(ε−1). In (2.24), due to the nondecreasing

property of h(γ), increasing the constant ξ yields a smaller fraction of workers 1−∆C̄(h; ξ) that

are communicating per iteration, yet with a larger number of iterations (cf. (2.20)). The key enabler

of LAG’s communication reduction is a heterogeneous environment associated with a favorable

h(γ) ensuring that the benefit of increasing ξ is more significant than its effect on increasing

iteration complexity. More precisely, for a given ξ, if h(γ) guarantees ∆C̄(h; ξ) >
√
Dξ, then we

have CLAG(ε) < CGD(ε). Intuitively speaking, if there is a large fraction of workers with small

Lm, LAG has lower communication complexity than GD. An example follows to illustrate this

reduction.

Example. Consider Lm = 1, m 6= M , and LM = L ≥ M2 � 1, where we have H(m) =

1/L,m 6= M, H(M) = 1, implying that h(γ) ≥ 1 − 1
M , if γ ≥ 1/L2. Choosing D ≥ M and

ξ = M2D/L2 < 1/D in (2.19) such that γD ≥ 1/L2 in (2.21), we have (cf. (2.24))

CLAG(ε)
/

CGD(ε) ≤
[
1−

(
1− 1

D + 1

)(
1− 1

M

)]/(
1−MD/L

)
≈ M +D

M(D + 1)
≈ 2

M
.

(2.25)

Due to technical issues in the convergence analysis, the current condition on h(γ) to ensure LAG’s

communication reduction is relatively restrictive. Establishing communication reduction on a

broader learning setting that matches the LAG’s intriguing empirical performance is in our research

agenda.
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2.3.2 Convergence in (non)convex case

LAG’s convergence and communication reduction guarantees go beyond the strongly-convex case.

We next establish the convergence of LAG for general convex functions.

Theorem 2 (convex case). Under Assumptions 1 and 2, if α and {ξd} are chosen properly, then

the iterates {θk} generated by LAG-WK or LAG-PS satisfy

L(θK)− L(θ∗) = O (1/K) . (2.26)

For nonconvex objective functions, LAG can guarantee the following convergence result.

Theorem 3 (nonconvex case). Under Assumption 1, if α and {ξd} are chosen properly, then the

iterates {θk} generated by LAG-WK or LAG-PS satisfy

min
1≤k≤K

∥∥θk+1 − θk
∥∥2

= o (1/K) and min
1≤k≤K

∥∥∇L(θk)
∥∥2

= o (1/K) . (2.27)

Theorems 2 and 3 assert that with the judiciously designed lazy gradient aggregation rules,

LAG can achieve order of convergence rate identical to GD for general convex and nonconvex

smooth objective functions. Furthermore, we next show that in these general cases, LAG still

requires fewer communication rounds than GD, under certain conditions on the heterogeneity

function h(γ).

In the general smooth (possibly nonconvex) case however, we define the communication

complexity in terms of achieving ε-gradient error; e.g., mink=1,··· ,K ‖∇L(θk)‖2 ≤ ε. Similar to

Proposition 1, we present the communication complexity as follows.

Proposition 2. 2[communication complexity] Under Assumption 1, with ∆C̄(h; {γd}) defined as

in Proposition 1, the communication complexity of LAG denoted as CN−LAG(ε) is bounded by

CN−LAG(ε) ≤
(
1−∆C̄(h; {γd})

) CN−GD(ε)

(1−∑D
d=1 ξd)

(2.28)

where CN−GD(ε) is the communication complexity of GD. Choosing the parameters as (2.19), if

the heterogeneity function h(γ) satisfies that there exists γ′ such that γ′ < h(γ′)
(D+1)DM2 , then we

have that

CN−LAG(ε) < CN−GD(ε). (2.29)
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Along with Proposition 1, we have shown that for strongly convex, convex, and nonconvex

smooth objective functions, LAG enjoys provably lower communication overhead relative to GD

in certain heterogeneous learning settings. In fact, the LAG’s empirical performance gain over GD

goes far beyond the above worst-case theoretical analysis, and lies in a much broader distributed

learning setting, which is confirmed by the subsequent numerical tests.

2.4 Numerical tests

To validate the theoretical results, this section evaluates the empirical performance of LAG in

linear and logistic regression tasks. All experiments were performed using MATLAB on an Intel

CPU @ 3.4 GHz (32 GB RAM) desktop.

For linear regression task, consider the square loss function at worker m as

Lm(θ) :=
∑
n∈Nm

(
yn − x>n θ

)2
(2.30)

where {xn, yn, ∀n ∈ Nm} are data at worker m.

Real datasets. Performance is tested on the following benchmark datasets [93]; see Table 2.3.

• Housing dataset [63] contains 506 samples (xn, yn) with yn representing the median value

of house price, which is affected by features in xn such as per capita crime rate and weighted

distances to five Boston employment centers.

• Body fat dataset contains 252 samples (xn, yn) with yn describing the percentage of body fat,

which is determined by underwater weighing and various body measurements in xn.

• Abalone dataset contains 417 samples (xn, yn) with yn for the age of abalone and xn for the

physical measurements of abalone, e.g., sex, height, and shell weight.

Dataset # features (d) # samples (N ) worker index
Housing 13 506 1,2,3
Body fat 14 252 4,5,6
Abalone 8 417 7,8,9

Table 2.3: A summary of real datasets used in the linear regression tests.

For logistic regression, consider the binary logistic regression problem

Lm(θ) :=
∑
n∈Nm

log
(

1 + exp(−ynx>n θ)
)

+
λ

2
‖θ‖2. (2.31)
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Dataset # features (d) # samples (N ) worker index
Ionosphere 34 351 1,2,3
Adult fat 113 1605 4,5,6

Derm 34 358 7,8,9

Table 2.4: A summary of real datasets used in the logistic regression tests.

where λ = 10−3 is the regularization constant.

Real datasets. Performance is tested on the following datasets; see a summary in Table 2.4.

• Ionosphere dataset [148] is to predict whether it is a “good” radar return or not – “good” if the

features in xn show evidence of some structures in the ionosphere.

• Adult dataset [79] contains samples that predict whether a person makes over 50K a year based

on features in xn such as work-class, education, and marital-status.

• Derm dataset [61] for differential diagnosis of erythemato-squaxous diseases, which is deter-

mined by clinical and histopathological attributes in xn such as erythema, family history, focal

hypergranulosis and melanin incontinence.

By default, we consider one server, and nine workers. Throughout the test, we use the

optimality error in objective L(θk)−L(θ∗) as figure of merit of our solution. To benchmark LAG,

we consider the following approaches.

. Cyc-IAG is the cyclic version of the incremental aggregated gradient (IAG) method [16, 60]

that resembles the recursion (2.4), but communicates with one worker per iteration cyclically.

. Num-IAG also resembles the recursion (2.4), but it randomly selects one worker to obtain a

fresh gradient per iteration with the probability of choosing worker m equal to Lm/
∑

m∈M Lm.

. Batch-GD is the GD iteration (2.2) that communicates with all the workers per iteration.

For LAG-WK, we choose ξd = ξ = 1/D with D = 10, and for LAG-PS, we choose more

aggressive ξd = ξ = 10/D with D = 10. Stepsizes for LAG-WK, LAG-PS, and GD are chosen as

α = 1/L; to optimize performance and guarantee stability, stepsizes for Cyc-IAG and Num-IAG

are chosen as α = 1/(ML). For the linear regression task, no regularization is added; for the

logistic regression task, the `2-regularization parameter is set to λ = 10−3.

We consider two synthetic data tests: a) linear regression with increasing smoothness con-

stants, e.g., Lm = (1.3m−1 + 1)2, ∀m; and, b) logistic regression with uniform smoothness

constants, e.g., L1 = . . . = L9 = 4. For each worker, we generate 50 samples xn ∈ R50 from

the standard Gaussian distribution, and rescale the data to mimic the increasing and uniform

smoothness constants. For the case of increasing Lm, it is not surprising that both LAG variants

need fewer communication rounds; see Figure 2.3. Interesting enough, for uniform Lm, LAG-WK
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Figure 2.3: Iteration and communication complexity in synthetic datasets with increasing Lm.
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Figure 2.4: Iteration and communication complexity in synthetic datasets with uniform Lm.

still has marked improvements on communication, thanks to its ability of exploiting the hidden

smoothness of the loss functions; that is, the local curvature of Lm may not be as steep as Lm; see

Figure 2.4.

Performance is also tested on the real datasets [93]: a) linear regression using Housing, Body
fat, Abalone datasets; and, b) logistic regression using Ionosphere, Adult, Derm datasets; see

Figures 2.5-2.6. Each dataset is evenly split into three workers with the number of features used in

the test equal to the minimal number of features among all datasets. In all tests, LAG-WK outper-

forms the alternatives in terms of both metrics, especially reducing the needed communication

rounds by several orders of magnitude. Its needed communication rounds can be even smaller than

the number of iterations, if none of workers violate the trigger condition (2.15) at certain iterations.

Additional tests on real datasets under different number of workers are listed in Table 2.5. Under

all the tested settings, LAG-WK consistently achieves the lowest communication complexity,
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Figure 2.5: Iteration and communication complexity for linear regression in real datasets.
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Figure 2.6: Iteration and communication complexity for logistic regression in real datasets.

which corroborates the effectiveness of LAG when it comes to communication reduction.

Similar performance gain has also been observed in the test on a larger dataset Gisette. The

Gisette dataset was constructed from the MNIST data [85]. After random selecting subset of

samples and eliminating all-zero features, it contains 2000 samples xn ∈ R4837. We randomly split

this dataset into nine workers. The performance of all the algorithms is reported in Figure 2.7 in

terms of the iteration and communication complexity. Clearly, LAG-WK and LAG-PS achieve the

same iteration complexity as GD, and outperform Cyc- and Num-IAG. Regarding communication

complexity, two LAG variants reduce the needed communication rounds by several orders of

magnitude compared with the alternatives.
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Linear regression Logistic regression
Algorithm M = 9 M = 18 M = 27 M = 9 M = 18 M = 27

Cyclic-IAG 5271 10522 15773 33300 65287 97773
Num-IAG 3466 5283 5815 22113 30540 37262
LAG-PS 1756 3610 5944 14423 29968 44598

LAG-WK 412 657 1058 584 1098 1723
Batch GD 5283 10548 15822 33309 65322 97821

Table 2.5: Communication complexity (ε = 10−8) under different number of workers.
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Figure 2.7: Iteration and communication complexity in Gisette dataset.

2.5 Proofs of lemmas and theorems

2.5.1 Proof of Lemma 2

Using the smoothness of L(·) in Assumption 1, we have that

L(θk+1)− L(θk) ≤
〈
∇L(θk),θk+1 − θk

〉
+
L

2

∥∥∥θk+1 − θk
∥∥∥2
. (2.32)

Plugging (2.6) into
〈
∇L(θk),θk+1 − θk

〉
leads to (cf. θ̂km = θ̂k−1

m , ∀m ∈Mk
c )〈

∇L(θk),θk+1 − θk
〉

=− α
〈
∇L(θk),∇L(θk) +

∑
m∈Mk

c

(
∇Lm

(
θ̂km
)
−∇Lm

(
θk
))〉

=− α
∥∥∥∇L(θk)

∥∥∥2
− α

〈
∇L(θk),

∑
m∈Mk

c

(
∇Lm

(
θ̂km
)
−∇Lm

(
θk
))〉
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=− α
∥∥∥∇L(θk)

∥∥∥2
+

〈
−√α∇L(θk),

√
α
∑

m∈Mk
c

(
∇Lm

(
θ̂km
)
−∇Lm

(
θk
))〉

. (2.33)

Using 2a>b = ‖a‖2 + ‖b‖2 − ‖a− b‖2, we can re-write the inner product in (2.33) as〈
−√α∇L(θk),

√
α
∑

m∈Mk
c

(
∇Lm

(
θ̂km
)
−∇Lm

(
θk
))〉

=
α

2

∥∥∥∇L(θk)
∥∥∥2

+
α

2

∥∥∥∥∥ ∑
m∈Mk

c

(
∇Lm

(
θ̂km
)
−∇Lm

(
θk
))∥∥∥∥∥

2

− 1

2

∥∥∥∥∥√α∇L(θk) +
√
α
∑

m∈Mk
c

(
∇Lm

(
θ̂km
)
−∇Lm

(
θk
))∥∥∥∥∥

2

(a)
=
α

2

∥∥∥∇L(θk)
∥∥∥2

+
α

2

∥∥∥∥∥ ∑
m∈Mk

c

(
∇Lm

(
θ̂km
)
−∇Lm

(
θk
))∥∥∥∥∥

2

− 1

2α

∥∥∥θk+1 − θk
∥∥∥2

(2.34)

where (a) follows from the LAG update (2.6).

Combining (2.33) and (2.34), and plugging into (2.32), the claim of Lemma 2 follows.

2.5.2 Proof of Lemma 3

Using the definition of Vk in (2.16), it follows that

Vk+1− Vk =L(θk+1)− L(θk) +
D∑
d=1

βd

∥∥∥θk+2−d − θk+1−d
∥∥∥2
−

D∑
d=1

βd

∥∥∥θk+1−d − θk−d
∥∥∥2

(a)

≤ − α

2

∥∥∥∇L(θk)
∥∥∥2

+
α

2

∥∥∥∥∥ ∑
m∈Mk

c

(
∇Lm

(
θ̂km
)
−∇Lm

(
θk
))∥∥∥∥∥

2

+

D∑
d=2

βd

∥∥∥θk+2−d−θk+1−d
∥∥∥2

+

(
L

2
− 1

2α
+ β1

)∥∥∥θk+1 − θk
∥∥∥2
−

D∑
d=1

βd

∥∥∥θk+1−d − θk−d
∥∥∥2

(2.35)

where (a) uses (2.8) in Lemma 2.

Decomposing the square distance as

∥∥∥θk+1 − θk
∥∥∥2

=

∥∥∥∥∥α∇L(θk) + α
∑

m∈Mk
c

(
∇Lm

(
θ̂km
)
−∇Lm

(
θk
)) ∥∥∥∥∥

2

(2.36)
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(b)

≤ (1 + ρ)α2
∥∥∥∇L(θk)

∥∥∥2
+
(
1 + ρ−1

)
α2

∥∥∥∥∥ ∑
m∈Mk

c

(
∇Lm

(
θ̂km
)
−∇Lm

(
θk
))∥∥∥∥∥

2

where (b) follows from Young’s inequality. Plugging (2.36) into (2.35), we arrive at

Vk+1 − Vk ≤
((

L

2
− 1

2α
+ β1

)
(1 + ρ)α2 − α

2

)∥∥∥∇L(θk)
∥∥∥2

+
D−1∑
d=1

(βd+1 − βd)
∥∥∥θk+1−d − θk−d

∥∥∥2
− βD

∥∥∥θk+1−D − θk−D
∥∥∥2

+

((
L

2
− 1

2α
+ β1

)(
1 + ρ−1

)
α2 +

α

2

)∥∥∥∥∥ ∑
m∈Mk

c

(
∇Lm

(
θ̂km
)
−∇Lm

(
θk
))∥∥∥∥∥

2

.

(2.37)

Using (
∑N

n=1 an)2 ≤ N∑N
n=1 a

2
n, it follows that

∥∥∥∥∥ ∑
m∈Mk

c

(
∇Lm

(
θ̂km
)
−∇Lm

(
θk
)) ∥∥∥∥∥

2

≤
∣∣∣Mk

c

∣∣∣ ∑
m∈Mk

c

∥∥∥∇Lm(θ̂km)−∇Lm(θk)∥∥∥2
(2.38a)

(c)

≤
∣∣∣Mk

c

∣∣∣ ∑
m∈Mk

c

L2
m

∥∥∥θ̂km − θk∥∥∥2
(2.38b)

(d)

≤ |M
k
c |2

α2|M|2
D∑
d=1

ξd

∥∥∥θk+1−d − θk−d
∥∥∥2

(2.38c)

where (c) follows the smoothness condition in Assumption 1, and (d) uses the trigger condition

(2.15a) if we derive from (2.38a) to (2.38c), uses (2.15b) if we derive from (2.38b) to (2.38c).

Plugging (2.38) into (2.37), we have

Vk+1 − Vk

≤
((

L

2
− 1

2α
+ β1

)
(1 + ρ)α2 − α

2

)∥∥∥∇L(θk)
∥∥∥2

+
D−1∑
d=1

(((
L

2
− 1

2α
+ β1

)(
1 + ρ−1

)
α2 +

α

2

)
ξd
∣∣Mk

c

∣∣2
α2|M|2 − βd + βd+1

)∥∥∥θk+1−d− θk−d
∥∥∥2

+

(((
L

2
− 1

2α
+ β1

)(
1 + ρ−1

)
α2 +

α

2

)
ξD
∣∣Mk

c

∣∣2
α2|M|2 − βD

)∥∥∥θk+1−D − θk−D
∥∥∥2
. (2.39)

After defining some constants to simplify the notation, the proof is then complete.
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Furthermore, if the stepsize α, parameters {βd}, and the trigger constants {ξd} satisfy(
L

2
− 1

2α
+ β1

)
(1 + ρ)α2 − α

2
≤ 0 (2.40a)((

L

2
− 1

2α
+ β1

)(
1 + ρ−1

)
α2 +

α

2

)
ξd
∣∣Mk

c

∣∣2
α2|M|2 − βd + βd+1 ≤ 0, ∀d = 1, . . . , D − 1

(2.40b)((
L

2
− 1

2α
+ β1

)(
1 + ρ−1

)
α2 +

α

2

)
ξD
∣∣Mk

c

∣∣2
α2|M|2 − βD ≤ 0 (2.40c)

then Lyapunov function is non-increasing; that is, Vk+1 ≤ Vk.

Choice of parameters. We discuss several choices of parameters that satisfy (2.40).

• If β1 = 1−αL
2α so that L2 − 1

2α + β1 = 0, after rearranging terms, (2.40) is equivalent to

α ≤ 1

L
; ξd ≤

2α(βd − βd+1)|M|2
|Mk

c |2
, ∀d ∈ [1, D − 1]; ξD≤

2αβD|M|2
|Mk

c |2
. (2.41)

• If β1 6= 1−αL
2α , after rearranging terms, (2.40) is equivalent to

α ≤ 1 + (1 + ρ)−1

L+ 2β1
; (2.42a)

ξd ≤
2α(βd − βd+1)|M|2

((1 + ρ−1)(2αβ1 + αL− 1) + 1) |Mk
c |2
, d = 1, . . . , D − 1 (2.42b)

ξD≤
2αβD|M|2

((1 + ρ−1)(2αβ1 + αL− 1) + 1) |Mk
c |2
. (2.42c)

i) If ρ→ 0 and β1 → 0, (2.42a) becomes 0 ≤ α ≤ 2/L, matching the stepsize region of GD.

ii) If α = 1/L and β1 > 0, (2.42b) and (2.42c) reduce to

ξd ≤
2α(βd − βd+1)|M|2

(2αβ1(1 + ρ−1) + 1)|Mk
c |2

and ξD≤
2αβD|M|2

(2αβ1(1 + ρ−1) + 1) |Mk
c |2
. (2.43)

Since (2.41) is in a simpler form, we will use this choice in the subsequent iteration and

communication analysis for brevity.
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2.5.3 Proof of Theorem 1

Using Lemma 3, it follows that (with c̃(α, β1) := L
2 − 1

2α + β1)

Vk+1 − Vk

≤−
(α

2
− c̃(α, β1) (1 + ρ)α2

)∥∥∥∇L(θk)
∥∥∥2

−
(
βD −

(
c̃(α, β1)

(
1 + ρ−1

)
α2 +

α

2

)ξD ∣∣Mk
c

∣∣2
α2|M|2

)∥∥∥θk+1−D − θk−D
∥∥∥2

−
D−1∑
d=1

(
βd − βd+1 −

(
c̃(α, β1)

(
1 + ρ−1

)
α2 +

α

2

)ξd ∣∣Mk
c

∣∣2
α2|M|2

)∥∥∥θk+1−d− θk−d
∥∥∥2

(a)

≤−
(
αµ−2c̃(α, β1) (1 + ρ)µα2

)(
L(θk)−L(θ∗)

)
−
(
βD −

(
c̃(α, β1)

(
1 + ρ−1

)
α2 +

α

2

)ξD ∣∣Mk
c

∣∣2
α2|M|2

)∥∥∥θk+1−D − θk−D
∥∥∥2

−
D−1∑
d=1

(
βd − βd+1−

(
c̃(α, β1)

(
1 + ρ−1

)
α2+

α

2

)ξd ∣∣Mk
c

∣∣2
α2|M|2

)∥∥∥θk+1−d− θk−d
∥∥∥2

(2.44)

where (a) uses the strong convexity or the PL condition in Assumption 3, e.g.,

2µ
(
L(θk)− L(θ∗)

)
≤
∥∥∥∇L(θk)

∥∥∥2
. (2.45)

With the constant c(α; {ξd}) defined as

c(α; {ξd}) := min
k

min
d=1,...,D−1

{
αµ− 2c̃(α, β1) (1 + ρ)µα2, 1−

(
c̃(α, β1)

(
1 + ρ−1

)
α2 +

α

2

) ξD
∣∣Mk

c

∣∣2
α2βD|M|2

,

1− βd+1

βd
−
(
c̃(α, β1)

(
1 + ρ−1

)
α2 +

α

2

) ξd
∣∣Mk

c

∣∣2
α2βd|M|2

}
(2.46)

we have from (2.44) that

Vk+1 − Vk
(b)

≤ − c(α; {ξd})
(
L(θk)− L(θ∗) +

D∑
d=1

βd

∥∥∥θk+1−d − θk−d
∥∥∥2
)

=− c(α; {ξd})Vk. (2.47)
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Rearranging terms in (2.47), we can conclude that

Vk+1 ≤ (1− c(α; {ξd})) Vk. (2.48)

The Q-linear convergence of Vk implies the R-linear convergence of L(θk)−L(θ∗).

The proof is then complete.

Iteration complexity. Since the linear rate constant in (2.48) is in a complex form, we discuss

the iteration complexity under a set of specific parameters (not necessarily optimal). Specifically,

we choose

ξ1 = . . . = ξD := ξ <
1

D
and α :=

1−Dξ/η
L

and βd :=
(D − d+ 1)ξ

2αη
, ∀d = 1, · · · , D

(2.49)

where η is a constant. Clearly, (2.49) satisfies the condition in (2.41).

Plugging (2.49) into (2.46), we have (cf. c̃(α, β1) = 0)

Γ := 1− c(α; {ξd}) = max
k

max
d=1,...,D

{
1− 1−Dξ/η

κ
,
η
∣∣Mk

c

∣∣2
|M|2

,
D − d+ η

∣∣Mk
c

∣∣2 / |M|2
D − d+ 1

}
.

(2.50)

If we choose η :=
√
Dξ such that

η|Mk
c |2

|M|2 < 1, we can simplify (2.50) as

Γ = max
k

{
1− 1−√Dξ

κ
,
D − 1 +

√
Dξ
∣∣Mk

c

∣∣2 / |M|2
D

}
(a)
= 1− 1−√Dξ

κ
. (2.51)

where (a) holds since we choose D ≤ κ. With the linear convergence rate in (2.51), we can derive

the iteration complexity as

VK

V0
≤
(

1− 1−√Dξ
κ

)K
≤ ε

=⇒K log

(
1− 1−√Dξ

κ

)
≤ log (ε)

=⇒ log

(
1

ε

)
≤ K log

(
1− 1−√Dξ

κ

)−1 (b)

≤ K
κ

1−
√
Dξ
− 1

=⇒K ≥ κ

1−√Dξ log
(
ε−1
)

(2.52)

where (b) uses log(1 + x) ≤ x, ∀x > −1. Therefore, we can conclude that ILAG(ε) =
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κ

1−
√
Dξ

log
(
ε−1
)
.

2.5.4 Proof of Lemma 4

The idea is essentially to show that if (2.21) holds, then for any iteration k, the worker m will not

violate the trigger conditions in (2.15) so that does not communicate with the server at the current

iteration, if it has communicated with the server at least once during the previous consecutive d

iterations.

Suppose at iteration k, the most recent iteration that the worker m did communicate with the

server is iteration k − d′ with 1 ≤ d′ ≤ d. Thus, we have θ̂k−1
m = θk−d

′
, which implies that

L2
m

∥∥∥θ̂k−1
m − θk

∥∥∥2
= L2

m

∥∥∥θk−d′ − θk∥∥∥2

= d′L2H2(m)
d′∑
b=1

∥∥∥θk+1−b − θk−b
∥∥∥2

(a)

≤ ξd
α2|M|2

d′∑
b=1

∥∥∥θk+1−b − θk−b
∥∥∥2

(b)

≤
∑d′

b=1 ξb
∥∥θk+1−b − θk−b

∥∥2

α2|M|2 +

∑D
b=d′+1 ξb

∥∥θk+1−b − θk−b
∥∥2

α2|M|2

= RHS of (2.15b) (2.53)

where (a) follows since the condition (2.21) is satisfied, so that

H2(m) ≤ ξd
dα2L2M2

≤ ξd
d′α2L2M2

(2.54)

and (b) follows from our choice of {ξd} such that for 1 ≤ d′ ≤ d, we have ξd ≤ ξd′ ≤ . . . ≤ ξ1

and
∥∥θk+1−b − θk−b

∥∥2 ≥ 0. Therefore, the trigger condition (2.15b) does not activate, and the

worker m does not communicate with the server at iteration k. With an additional step that

‖∇Lm(θ̂k−1
m )−∇Lm(θk)‖2 ≤ L2

m‖θ̂k−1
m − θk‖2, we can also prove that if θ̂k−1

m = θk−d
′
, the

trigger condition (2.15a) does not activate either.

Note that the above argument holds for any 1 ≤ d′ ≤ d, and thus if (2.21) holds, the worker m

communicates with the server at most every other d iterations.



31

2.5.5 Proof of Proposition 1

The condition of communication reduction given in (2.21) is equivalent to

H2(m) ≤ ξd
α2L2|M|2d := γd. (2.55)

Together with the definition of heterogeneity score function in (2.22), given γd, the quantity h (γd)

essentially lower bounds the percentage of workers that communicate with the server at most every

other d iterations; that is at most K/(d+ 1) times until iteration K.

To calculate the communication complexity of LAG, we split all the workers into D + 1

subgroups:

M0 - every worker m that does not satisfyH2(m) < γ1;

· · ·
Md - every worker m that does satisfyH2(m) < γd but does not satisfyH2(m) < γd+1;

· · ·
MD - every worker m that does satisfyH2(m) < γD.

The above splitting is according to our claims in Lemma 4, which splits all the workers without

overlapping. The neat thing is that for workers in each subgroupMd, we can upper bound its

communication rounds until the current iteration. Hence, the total communication complexity of

LAG is upper bounded by

CLAG(ε) =
∑
m∈M

Communication rounds of worker m

=
D∑
d=0

Total communication rounds of workers inMd

=

D∑
d=0

|Md| ×
ILAG(ε)

d+ 1

(a)

≤
(

1− h (γ1)+
1

2

(
h (γ1)− h (γ2)

)
+. . .+

1

D + 1
h (γD)

)
M ILAG(ε)

=

(
1−

D∑
d=1

(
1

d
− 1

d+ 1

)
h (γd)︸ ︷︷ ︸

∆C̄(h;{γd})

)
M ILAG(ε) :=

(
1−∆C̄(h; {γd})

)
M ILAG(ε)

(2.56)

where (a) uses the definition of subgroups {Md} and the function h(γ) in (2.22).
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Figure 2.8: The area of the light blue polygon lower bounds the quantity ∆C̄(h; ξ) in (2.59). It is
generated according to γd := 1/(dγ1) and D=10.

If we choose the parameters as those in (2.49), we can simplify the expression of (2.56) and

arrive at

CLAG(ε) ≤
(
1−∆C̄(h; ξ)

) Mκ

1−√Dξ log(ε−1) (2.57)

where ∆C̄(h; {γd}) is written as ∆C̄(h; ξ) in this case, because γd := ξ
(1−
√
Dξ)2M2d

, ∀d.

On the other hand, even with a larger stepsize α = 1/L, the communication complexity of

GD is CGD(ε) := Mκ log(ε−1). Therefore, if we can show that

1−∆C̄(h; ξ)

1−√Dξ ≤ 1 ⇐⇒
√
Dξ ≤ ∆C̄(h; ξ) (2.58)

then it is safe to conclude that the communication complexity of LAG is lower than that of GD.

Using the nondecreasing property of h, we have that (cf. the area of the light blue polygon in

Figure 2.8)

∆C̄(h; ξ)∈
[
Dh(γD)

D + 1
,
Dh(γ1)

D + 1

]
⊆
[
0,

D

D + 1

]
(2.59)

where we use the fact that 0 ≤ h(γ) ≤ 1. Since for any ξ ∈ (0, 1/D), there exists a function h

such that ∆C̄(h; ξ) achieves any value within [0, D/(D + 1)]. Therefore, we can conclude that if

ξ ≤ D
(D+1)2

so that
√
Dξ ≤ D/(D + 1), there always exists h(γ) or a distributed learning setting

such that CLAG(ε) < CGD(ε).

2.5.6 Proof of Theorem 2

Before establishing the convergence in the convex case, we present a critical lemma.
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Lemma 5. Under Assumptions 1-2, the sequences of Lyapunov functions {Vk} satisfy

(
Vk
)2≤(∥∥∥∇L(θk)

∥∥∥2
+

D∑
d=1

βd

∥∥∥θk+1−d − θk−d
∥∥∥2
)(∥∥∥θk−θ∗∥∥∥2

+
D∑
d=1

βd

∥∥∥θk+1−d − θk−d
∥∥∥2
)

:= V
k
(1) × V

k
(2) (2.60)

where V
k
(1) and V

k
(2) denote the two terms upper bounding

(
Vk
)2, respectively.

Proof: Define two vectors as

ak :=
[
∇>L(θk),

√
β1

∥∥∥θk − θk−1
∥∥∥ , . . . ,√βD ∥∥∥θk+1−D − θk−D

∥∥∥]> (2.61a)

bk :=
[
(θk − θ∗)>,

√
β1

∥∥∥θk − θk−1
∥∥∥ , . . . ,√βD ∥∥∥θk+1−D − θk−D

∥∥∥]> . (2.61b)

The convexity of L(θ) implies that

L(θk)− L(θ∗) ≤ 〈∇L(θk),θk − θ∗〉. (2.62)

Recalling the definition of Vk in (2.16), it follows that

Vk = L(θk)− L(θ∗) +
D∑
d=1

βd

∥∥∥θk+1−d − θk−d
∥∥∥2

≤ 〈ak,bk〉 ≤ ‖ak‖‖bk‖ (2.63)

and squaring both sides of (2.63) leads to

(
Vk
)2
≤
(∥∥∥∇L(θk)

∥∥∥2
+

D∑
d=1

βd

∥∥∥θk+1−d − θk−d
∥∥∥2
)(∥∥∥θk−θ∗∥∥∥2

+

D∑
d=1

βd

∥∥∥θk+1−d − θk−d
∥∥∥2
)

(2.64)

from which we can conclude the proof.

Now we are ready to prove Theorem 2. Lemma 3 implies that

Vk+1 − Vk ≤−
(α

2
− c̃(α, β1) (1 + ρ)α2

)∥∥∥∇L(θk)
∥∥∥2

−
(
βD −

(̃
c(α, β1)

(
1 + ρ−1

)
α2 +

α

2

)ξD ∣∣Mk
c

∣∣2
α2|M|2

)∥∥∥θk+1−D − θk−D
∥∥∥2
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−
D−1∑
d=1

(
βd − βd+1 −

(̃
c(α, β1)

(
1 + ρ−1

)
α2 +

α

2

)ξd ∣∣Mk
c

∣∣2
α2|M|2

)∥∥∥θk+1−d− θk−d
∥∥∥2

≤− c(α; {ξd})
(∥∥∥∇L(θk)

∥∥∥2
+

D∑
d=1

βd

∥∥∥θk+1−d − θk−d
∥∥∥2
)

=− c(α; {ξd})Vk(1) (2.65)

where the definition of c(α; {ξd}) is given by

c(α; {ξd}) := min
k

{
α

2
−c̃(α, β1) (1 + ρ)α2, 1−

(
c̃(α, β1)

(
1 + ρ−1

)
α2 +

α

2

) ξD
∣∣Mk

c

∣∣2
α2βD|M|2

,

1− βd+1

βd
−
(
c̃(α, β1)

(
1 + ρ−1

)
α2 +

α

2

) ξ
∣∣Mk

c

∣∣2
α2βd|M|2

}
.

(2.66)

On the other hand, without strong convexity, we can bound V
k
(2) as

V
k
(2) :=

∥∥∥θk−θ∗∥∥∥2
+

D∑
d=1

βd

∥∥∥θk+1−d − θk−d
∥∥∥2
≤ R (2.67)

where the constant R in the last inequality exists since L(θ) is coercive in Assumption 2 so that

L(θ∗) ≤ L(θk) <∞ implies ‖θk‖ <∞ thus
∥∥θk−θ∗∥∥ <∞ and

∥∥θk−θk−1
∥∥ <∞.

Plugging (2.65) and (2.33) into (2.60) in Lemma 5, we have(
Vk
)2
≤ V

k
(1)V

k
(2) ≤ R

c(α; {ξd})
(Vk − Vk+1). (2.68)

Using the fact that the non-increasing property of Vk in Lemma 3, we have that

Vk+1Vk ≤
(

Vk
)2
≤ R

c(α; {ξd})
(Vk − Vk+1). (2.69)

Dividing Vk+1Vk on both sides of (2.69) and rearranging terms, we have

c(α; {ξd})
R

≤ 1

Vk+1
− 1

Vk
. (2.70)
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Summing up (2.70), it follows that

Kc(α; {ξd})
R

≤ 1

VK
− 1

V0
≤ 1

VK
(2.71)

from which we can conclude the proof.

2.5.7 Proof of Theorem 3

Lemma 3 implies that

Vk+1 − Vk ≤−
(α

2
− c̃(α, β1) (1 + ρ)α2

)∥∥∥∇L(θk)
∥∥∥2

−
(
βD −

(̃
c(α, β1)

(
1 + ρ−1

)
α2 +

α

2

)ξD ∣∣Mk
c

∣∣2
α2|M|2

)∥∥∥θk+1−D − θk−D
∥∥∥2

−
D−1∑
d=1

(
βd − βd+1 −

(̃
c(α, β1)

(
1 + ρ−1

)
α2 +

α

2

)ξd ∣∣Mk
c

∣∣2
α2|M|2

)∥∥∥θk+1−d− θk−d
∥∥∥2

≤− c(α; {ξd})
(∥∥∥∇L(θk)

∥∥∥2
+

D∑
d=1

βd

∥∥∥θk+1−d − θk−d
∥∥∥2
)

(2.72)

Summing up both sides of (2.72), we have

c(α; {ξd})
K∑
k=1

(∥∥∥∇L(θk)
∥∥∥2

+

D∑
d=1

βd

∥∥∥θk+1−d − θk−d
∥∥∥2
)
≤ V1 − VK+1. (2.73)

Taking K →∞, we have that

c(α; {ξd}) lim
K→∞

K∑
k=1

(∥∥∥∇L(θk)
∥∥∥2

+
D∑
d=1

βd

∥∥∥θk+1−d − θk−d
∥∥∥2
)
≤ V1 (2.74)

where the last inequality holds since the Lyapunov function (2.16) is lower bounded by Vk ≥ 0, ∀k,

and V1 <∞. Given the choice of α and {ξd} in (2.40), the constant in (2.74) is c(α; {ξd}) > 0,

and thus two terms in the LHS of (2.74) are summable, which implies that

∞∑
k=1

∥∥∥θk+1 − θk
∥∥∥2
<∞ (2.75)
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and likewise that
∞∑
k=1

∥∥∥∇L(θk)
∥∥∥2
<∞. (2.76)

Using the implications of summable sequences in [43, Lemma 3], the theorem follows.

2.5.8 Proof of Proposition 2

Choosing βd := 1
2α

∑D
τ=d ξτ in the Lyapunov function (2.16), we have

Vk := L(θk)− L(θ∗) +
D∑
d=1

(
∑D

j=d ξj)

2α
‖θk+1−d − θk−d‖2 (2.77)

Using Lemma 2, we arrive at

Vk+1 − Vk ≤ −α
2

∥∥∥∇L(θk)
∥∥∥2

+

(
L

2
− 1

2α
+

∑D
d=1 ξd
2α

)∥∥∥θk+1 − θk
∥∥∥2
. (2.78)

If the stepsize is chosen as α = 1
L(1−∑D

d=1 ξd), we have

Vk+1 − Vk ≤ −α
2

∥∥∥∇L(θk)
∥∥∥2
. (2.79)

Summing up both sides from k = 1, . . . ,K, and initializing θ1−D = · · · = θ0 = θ1, we have

K∑
k=1

∥∥∥∇L(θk)
∥∥∥2
≤ 2

α
V1 =

2

α
(L(θ1)− L(θ∗)) =

2L

1−∑D
d=1 ξd

(L(θ1)− L(θ∗)) (2.80)

which implies that

min
k=1,··· ,K

∥∥∥∇L(θk)
∥∥∥2
≤ 2L

(1−∑D
d=1 ξd)K

(L(θ1)− L(θ∗)) (2.81)

With regard to GD, it has the following guarantees [119]

min
k=1,··· ,K

∥∥∥∇L(θk)
∥∥∥2
≤ 2L

K
(L(θ1)− L(θ∗)). (2.82)

Thus, to achieve the same ε-gradient error, the iteration of LAG is (1−∑D
d=1 ξd)

−1 times than GD.

Similar to the derivations in (2.56), since the LAG’s average communication rounds per iteration

is (1−∆C̄(h; {γd})) times that of GD, we arrive at (2.28).
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If we choose ξ1 = ξ2 = . . . = ξD = ξ, then α = 1−Dξ
L , and γd = ξ/d

α2L2M2 , d = 1, . . . , D. As

h(·) is non-decreasing, if γD ≥ γ′, we have h(γD) ≥ h(γ′). With the definition of ∆C̄(h; {γd})
in (2.23), we get

∆C̄(h; {γd}) =

D∑
d=1

(
1

d
− 1

d+ 1

)
h (γd) ≥

D∑
d=1

(
1

d
− 1

d+ 1

)
h (γD) ≥ D

D + 1
h(γ′). (2.83)

Therefore, the total communications are reduced if(
1− D

D + 1
h(γ′)

)
· 1

1−Dξ < 1 (2.84)

which is equivalent to h(γ′) > (D + 1)ξ. The condition γD ≥ γ′ requires

ξ/D ≥ γ′(1−Dξ)2|M|2. (2.85)

Obviously, if ξ > γ′D|M|2, then (2.85) holds. In summary, we need

γ′ <
ξ

DM2
<

h(γ′)

(D + 1)DM2
. (2.86)

Therefore, we need the function h to satisfy that there exists γ′ such that (2.86) holds.



Chapter 3

Federated reinforcement learning over
networked agents

3.1 Introduction

Reinforcement learning (RL) involves a sequential decision-making procedure, where a learner

takes (possibly randomized) actions in a stochastic environment over a sequence of time steps, and

aims to maximize the long-term cumulative rewards received from the interacting environment.

Usually modeled as a Markov decision process (MDP) [158], the sequential decision-making

process has been tackled by various RL algorithms including Q-learning [169], policy gradient

(PG) [159], and actor-critic methods [80]. While these popular RL algorithms are originally

developed for the single-learner task, a number of practical RL tasks such as autonomous driving

[142], robotics [154] and video games [161], involve multiple learners operating in a distributed

fashion. In this paper, we consider the distributed reinforcement learning (DRL) problem that

covers two general RL settings: multi-agent collaborative RL and parallel RL. The DRL settings

we consider include a central controller that coordinates the learning processes of all learners.

The learners can be agents in the multi-agent collaborative RL, or, workers in the parallel RL.

In the former setting, multiple agents aim to maximize the team-averaged long-term reward

via collaboration in a common environment [76, 165, 180]; while in the latter, multiple parallel

machines are used for solving large-scale MDPs with improved exploration and high data efficiency

[114, 111]. Similar learning paradigms have been investigated in distributed supervised learning

[129, 90], e.g., Federated Learning [110], and also in parallel training of large-scale RL tasks

[111].

38
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To coordinate the distributed learners, the central controller must exchange information with

all learners, by collecting their rewards and local observations, or, broadcasting the policy to

them. This type of information exchange requires frequent communication between the controller

and the learners. However, in many DRL applications, including cloud-edge AI systems [153],

autonomous driving [142], and other applications in IoT [30], the communication is costly and the

latency caused by frequent communication becomes the bottleneck of the overall performance.

These considerations motivate well the development of communication-efficient approaches for

latency-sensitive DRL tasks. Although there has been a surging interest in studying communication-

efficient approaches for supervised learning [5, 73, 31], no prior work has focused on the DRL

setting. In this context, our goal is to develop a simple yet general algorithm for solving various

DRL problems, with provable convergence guarantees and reduced communication overhead.

3.1.1 Our contributions

Targeting a communication-efficient solver for DRL, we propose a new PG method that we term

Lazily Aggregated Policy Gradient (LAPG). With judiciously designed communication trigger

rules, LAPG is shown capable of: i) achieving the same order of convergence rate (thus iteration

complexity) as vanilla PG under standard conditions; and, ii) reducing the communication rounds

required to achieve a desirable learning accuracy, when the distributed agents are heterogeneous

(meaning reward functions and initial states are not homogeneous). In certain learning settings, we

show that LAPG requires only O(1/M) communication of PG with M denoting the number of

learners. Empirically, we evaluate the performance of LAPG using neural network-parameterized

policies on the popular multi-agent RL benchmark, and corroborate that LAPG can considerably

reduce the communication required by PG.

3.1.2 Related work

PG methods. PG methods have been recognized as one of the most pervasive RL algorithms

[158], especially for RL tasks with large and possibly continuous state-action spaces. By parame-

terizing the infinite-dimensional policy with finite-dimensional vectors [158], PG methods reduce

the search for the optimal policy over functional spaces to that over parameter spaces. Early PG

methods include the well-known REINFORCE algorithm [171], as well as the variance-reduced

G(PO)MDP algorithm [11]. Both REINFORCE and G(PO)MDP are Monte-Carlo sampling-type

algorithms that estimate the policy gradient using the rollout trajectory data. To further reduce

the variance, a policy gradient estimate that utilizes Q-function approximation was developed in
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[159], based on a policy gradient theorem derived therein. Recently, several PG variants have

made significant progress in accelerating convergence [74], reducing variance [123], handling

continuous action spaces [149], and ensuring policy improvement [124], by employing deep neural

networks as function approximators [138, 94, 139]. However, all these algorithms are developed

for the single-learner setting.

DRL. DRL has been investigated in the regimes of both multi-agent RL and parallel RL. The

studies of multi-agent RL can be traced back to [41] and [172], with applications to network

routing [20] and power network control [137]. All these works however, rather heuristically build

on the direct modification of Q-learning from a single- to multi-agent settings, without performance

guarantees. The first DRL algorithm with convergence guarantees is reported in [84], although

tailored for the tabular multi-agent MDP setting. More recently, [76] developed a distributed

Q-learning algorithm, termed QD-learning, over networked agents that can only communicate

with their neighbors. In the same setup, fully decentralized actor-critic algorithms with function

approximation were developed in [179, 180] to handle huge or even continuous state-action spaces.

From an empirical viewpoint, a number of deep multi-agent collaborative RL algorithms has also

been developed [59, 100, 122]. On the other hand, parallel RL, which can efficiently tackle the

single-learner yet large-scale RL problem by exploiting parallel computation, has also drawn

increasing attention in recent years. In particular, [92] applied the Map Reduce framework to

parallelize batch RL methods, while [114] introduced the first massively distributed framework for

RL. In [111], asynchronous RL algorithms have also been introduced to solve large-scale MDPs.

This parallelism was shown to stabilize the training process, and also benefit data efficiency [111].

Nonetheless, none of these algorithms has dealt with communication-efficiency in DRL.

Communication-efficient learning. Improving communication efficiency in generic distributed

learning settings has attracted much attention recently, especially for supervised learning [73, 110].

With their undisputed performance granted, available communication-efficient methods do not

directly apply to DRL, because they are either non-stochastic [31, 183], or, they are tailored for

convex problems [152]. Algorithms for nonconvex problems are available e.g., [5], but they are

designed to minimize the required bandwidth per communication, not the rounds. Compared to

communication-efficient supervised learning in [31], the novelty of LAPG here lies in the fact that

the gradient used in DRL is stochastic and biased, which requires new algorithmic design and

more involved analysis. Another unique feature of RL is that the distribution used to sample data

is a function of the time-varying policy parameters, which introduces non-stationarity. Therefore,
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communication-efficient DRL is a challenging task, and so far it has been an uncharted territory.

3.2 Distributed reinforcement learning

In this section, we present the essential background on DRL and the plain-vanilla PG methods that

can be applied to solve the DRL tasks.

3.2.1 Problem statement

Consider a central controller and a group of M distributed learners belonging to a set M :=

{1, · · · ,M}. Depending on the specific DRL setting to be introduced shortly, a learner can

be either an agent in the multi-agent collaborative RL, or, a worker in the parallel RL. As in

conventional RL, the DRL problem can be characterized under the umbrella of MDP, described by

the following tuple

(S,A,P, γ, ρ, {`m}m∈M) (3.1)

where S and A are the state space and the action space for all learners, respectively; P is the space

of the state transition kernels defined as S ×A → ∆(S); γ ∈ (0, 1) is the discounting factor; ρ

is the initial state distribution; and `m : S ×A → R is the local loss (or the negative reward) for

learner m.

In addition to the tuple (3.1) that describes an MDP, another important component of MDP

is a policy. We consider the stochastic policy π : S → ∆(A) that specifies a conditional

distribution of all possible joint actions given the current state s, where the probability density

of taking the joint action a is denoted as π(a|s). For the commonly used Gaussian policy

[46], it is a function of the state-dependent mean µ(s) and a covariance matrix Σ, given by

π( · |s) = N (µ(s),Σ). In addition to the state-dependent mean, the covariance of a Gaussian

policy can be also state-dependent in general; that is, π( · |s) = N (µ(s),Σ(s)). Considering

discrete time t ∈ N in an infinite horizon, a policy π can generate a trajectory of state-action pairs

T := {s0,a0, s1,a1, s2,a2, · · · } with st ∈ S and at ∈ A. In distributed RL, the objective is to

find the optimal policy π that minimizes the infinite-horizon discounted long-term loss aggregated

over all learners, that is

min
π

∑
m∈M

Lm(π) with Lm(π) := ET ∼P(·|π)

[ ∞∑
t=0

γt`m(st,at)

]
(3.2)

where `m(st,at) and Lm(π) are the loss given the state-action pair (st,at) and the cumulative
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loss for learner m, respectively. The expectation in (3.2) is taken over the random trajectory T .

Given a policy π, the probability of generating trajectory T is given by

P(T |π) = P(s0,a0, s1,a1, s2,a2, · · · |π) = ρ(s0)
∞∏
t=0

π(at|st)P(st+1|st,at) (3.3)

where ρ(s0) is the probability of initial state being s0, P(st+1|st,at) is the transition probability

from the current state st to the next state st+1 by taking action at. Clearly, the trajectory T is

determined by both the underlying MDP and the policy π.

Depending on how different learners are coupled with each other, the generic DRL formulation

(3.2) includes the two popular RL settings, as highlighted below.

Multi-agent collaborative reinforcement learning. A number of important RL applications

involve interaction between multiple heterogeneous but collaborative decision-makers (a.k.a.

agents), such as those in controlling unmanned aerial vehicle, autonomous driving [142] and many

more in future IoT paradigm [30]. In multi-agent collaborative RL, each agent m observes a global

state st ∈ S shared by all the agents, and takes an action am,t ∈ Am with the local action space

denoted as Am. The local action of agent m is generated by a local policy πm : S → ∆(Am).

While the local action spaces of different agents can be different, agents interact with a common

environment that is influenced by the joint actions of all the agents, where the joint action space can

be written as A :=
∏
m∈MAm. In other words, the joint action (a1,t, · · · ,aM,t) ∈ A, not any of

the local action am,t, determines the transition probability to the next state st+1 as well as the loss of

each agent `m(st, (a1,t, · · · ,aM,t)). As a consequence, the multi-agent collaborative RL problem

can be characterized as an MDP using the following tuple
(
S,∏m∈MAm,P, γ, ρ, {`m}m∈M

)
,

which can be formulated in the following form

min
π

∑
m∈M

Lm(π) with Lm(π) := ET ∼P(·|π)

[ ∞∑
t=0

γt`m
(
st, (a1,t, · · · ,aM,t)

)]
(3.4)

where π := (π1 · · · ,πM ) is a joint policy that concatenates all the local policies {πm}m∈M,

and the expectation in Lm(π) is taken over all possible joint state-action trajectories, given

by T := {s0, (a1,0, · · · ,aM,0), s1, (a1,1, · · · ,aM,1), s2, (a1,2, · · · ,aM,2), · · · }. Replacing the

action at in (3.2) by the joint action (a1,t, · · · ,aM,t), the multi-agent collaborative RL problem

can be viewed as an instance of DRL. Different from a single-agent MDP, the agents here are

coupled by the state transition that depends on the joint action, and the local loss function that
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depends on the joint state.

Parallel reinforcement learning. Different from multi-agent RL, parallel RL is motivated by

solving a large-scale single-agent RL task that needs to be run in parallel on multiple computing

units (a.k.a. workers) [114]. The advantage of parallel RL is that it can reduce the training

time and stabilize the training processes [111]. Under such a setting, multiple workers typically

aim to learn a common policy π : S → ∆(A) for different instances of an identical MDP. By

different instances of an identical MDP, we mean that each worker m aims to solve an independent

MDP characterized by (Sm,Am,Pm, γ, ρm, `m). In particular, the local action and state spaces

as well as the transition probability of each worker are the same; that is, A = Am,P = Pm,,
and S = Sm, ∀m ∈ M. However, the losses and the initial state distributions are different

among workers, where the initial state distribution of worker m is ρm, and the loss of worker m

is `m : S × A → R. Nevertheless, they are quantities drawn from the same distribution, which

satisfy E[ρm(s)] = ρ(s) and E[`m(s,a)] = `(s,a) for any (s,a) ∈ S ×A. Therefore, the parallel

RL can be written as follows

min
π

∑
m∈M

Lm(π) with Lm(π) := ETm∼P(·|π)

[ ∞∑
t=0

γt`m(sm,t,am,t)

]
(3.5)

where sm,t ∈ Sm, am,t ∈ Am are the state and action of worker m, and π is the common policy to

be learned. The expectation in Lm(π) is taken over all possible state-action trajectories of worker

m, given by Tm := {sm,0,am,0, sm,1,am,1, sm,2,am,2, · · · }. In contrast to the formulation of

multi-agent RL in (3.4), the workers in parallel RL are not coupled by the joint state transition

distributions or the loss functions, but rather, they are intertwined by employing a common local

policy.

3.2.2 Policy gradient methods

Policy gradient methods have been widely used in various RL problems with massive and possibly

continuous state and action spaces. In those cases, tabular RL approaches are no longer tractable,

and the intended solver typically involves function approximation. To overcome the inherent

difficulty of learning a function, policy gradient methods restrict the search for the best performing

policy over a class of parametrized policies. In particular, the policy π is usually parameterized by

θ ∈ Rd, which is denoted as π(·|s;θ) or π(θ) for simplicity. For example, the commonly used
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Gaussian policy can be parameterized as

π( · |s;θ) = N (µ(s;θ),Σ) (3.6)

where µ(s;θ) is a general nonlinear mapping from S to A parameterized by θ. The mapping

µ(s;θ) can either be a deep neural network with the weight parameters θ, or a linear function of

θ of the form µ(s;θ) = φ(s)>θ, where φ(s) is the feature matrix corresponding to the state s.

Accordingly, the long-term discounted reward of a parametric policy per agent m is denoted by

Lm(θ) := Lm(π(θ)). Hence, the DRL problem (3.2) can be rewritten as the following parametric

optimization problem

min
θ

∑
m∈M

Lm(θ) with Lm(θ) := ET ∼P( · |θ)

[ ∞∑
t=1

γt`m(st,at)

]
(3.7)

where the probability distribution of a trajectory T under the policy π(θ) is denoted as P(·|θ).

The search for an optimal policy can thus be performed by applying the gradient descent-type

iterative methods to the parameterized optimization problem (3.7). By virtue of the log-trick, the

gradient of each learner’s cumulative loss Lm(θ) in (3.7) can be written as [11]

Policy gradient ∇Lm(θ) = ET ∼P( · |θ)

[ ∞∑
t=0

(
t∑

τ=0

∇ logπ(aτ |sτ ;θ)

)
γt`m(st,at)

]
.

(3.8)

When the MDP model (3.1) is unknown, or, the expectation in (3.8) is computationally difficult to

calculate, the stochastic estimate of the policy gradient (3.8) is often used, that is

G(PO)MDP gradient ∇̂Lm(θ) =

∞∑
t=0

(
t∑

τ=0

∇ logπ(aτ |sτ ;θ)

)
γt`m(st,at) (3.9)

which is first proposed in [11] abbreviated as G(PO)MDP policy gradient. The G(PO)MDP policy

gradient is an unbiased estimator of the policy gradient, while the latter incurs lower variance than

other estimators, e.g., REINFORCE [171]. As a result, we will leverage the G(PO)MDP gradient

in the ensuing algorithm design and performance analysis.

Even though, the variance of G(PO)MDP gradient is still high in general, which requires using

small stepsizes and running sufficiently many iterations to guarantee convergence. For vanilla

PG method in DRL, a number of needed iterations result in high communication overhead, since
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Figure 3.1: LAPG for communication-efficient distributed reinforcement learning.

all learners’ gradients need to be uploaded at each iteration in order to form the gradient for the

collective objective in (3.2). This motivates the development of communication-efficient DRL

algorithms to be introduced next.

3.3 Communication-efficient policy gradient approach

Before introducing our approach, we first revisit the popular G(PO)MDP gradient method for

solving (3.7) in the DRL setting: At iteration k, the central controller broadcasts the current policy

parameter θk to all the learners; every learner m ∈M computes an approximate policy gradient

via

∇̂N,TLm
(
θk
)

:=
1

N

N∑
n=1

T∑
t=0

(
t∑

τ=0

∇ logπ(an,mτ |sn,mτ ;θk)

)
γt`m(sn,mt ,an,mt ) (3.10)

where T n,mT := (sn,m0 ,an,m0 , sn,m1 ,an,m1 , · · · , sn,mT ,an,mT ) is the nth T-slot trajectory (a.k.a. episode)

generated at learner m; every learner m then uploads ∇̂N,TLm
(
θk
)

to the central controller; and

once receiving gradients from all learners, the controller updates the policy parameters via

PG iteration θk+1 = θk − α∇̂kPG with ∇̂kPG :=
∑
m∈M

∇̂N,TLm(θk) (3.11)

where α is a stepsize, and ∇̂kPG is an aggregated policy gradient with each component received

from each learner. The policy gradient in (3.10) is a mini-batch G(PO)MDP gradient computed by

learner m using N batch trajectories {T n,mT }Nn=1 over T time slots. To implement the mini-batch

PG update (3.11) however, the controller has to communicate with all learners to obtain fresh
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{∇̂N,TLm
(
θk
)
}.

In this context, the present paper puts forward a new policy gradient-based method for DRL

(as simple as PG) that can skip communication at certain rounds, which justifies the term Lazily

Aggregated Policy Gradient (LAPG). With derivations deferred later, we introduce the LAPG

iteration for the DRL problem (3.7) that resembles the PG update (3.11), given by

LAPG iteration θk+1 = θk − α∇̂k with ∇̂k :=
∑
m∈M

∇̂N,TLm
(
θ̂km
)

(3.12)

where each policy gradient ∇̂N,TLm(θ̂km) is either ∇̂N,TLm(θk), when θ̂km = θk, or an outdated

policy gradient that has been computed using an old copy θ̂km 6= θk. Instead of requesting fresh

batch policy gradients from every learner in (3.11), our fresh idea is to obtain ∇̂k by refining

the previous aggregated gradient ∇̂k−1; e.g., using only the new gradients from the learners

in Mk, while reusing the outdated gradients from the rest of the learners. Therefore, with

θ̂km :=θk, ∀m∈Mk, θ̂km := θ̂k−1
m , ∀m /∈Mk, LAPG in (3.12) is equivalent to

θk+1 = θk − α
∑
m∈M

∇̂N,TLm
(
θ̂k−1
m

)
− α

∑
m∈Mk

(
∇̂N,TLm

(
θk
)
− ∇̂N,TLm

(
θ̂k−1
m

))
(3.13a)

:= θk − α∇̂k−1 − α
∑

m∈Mk

δ∇̂km (3.13b)

where δ∇̂km := ∇̂N,TLm(θk)− ∇̂N,TLm(θ̂k−1
m ) denotes the innovation between two evaluations

of ∇̂N,TLm at the current policy parameter θk and the old copy θ̂k−1
m . Note that the old copies

for evaluating policy gradient at each learner can be different here, depending on the most recent

iteration that each learner uploads its fresh batch policy gradient.

To this point, a myopic approach to minimizing per-iteration communication is to include as few

learners inMk as possible. However, it will turn out that such simple selection will lead to much

more number of iterations such that increasing the total number of needed communication rounds.

A more principled way is to guide the communication selection according to learners’ optimization

progress. The first step of implementing such principle is to characterize the optimization progress

as follows.

Lemma 6 (LAPG descent lemma). Suppose L(θ) :=
∑

m∈M Lm(θ) is L-smooth, and θk+1 is

generated by running one-step LAPG iteration (3.12) given θk. If the stepsize is selected such that
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Algorithm 3 PG for DRL
1: Input: Stepsize α > 0, N , and T .
2: Initialize: θ1.
3: for k = 1, 2, . . . ,K do
4: Controller broadcasts θk to all learners.
5: for learner m = 1, . . . ,M do
6: Learner m computes ∇̂N,TLm(θk).
7: Learner m uploads ∇̂N,TLm(θk).
8: end for
9: Controller updates the policy via (3.11).

10: end for

Algorithm 4 LAPG for DRL
1: Input: Stepsize α > 0, {ξd}, N and T .
2: Initialize: θ1, ∇̂0, {θ̂0m,∀m}.
3: for k = 1, 2, . . . ,K do
4: Controller broadcasts the current policy.
5: for learner m = 1, . . . ,M do
6: Learner m computes ∇̂N,TLm(θk).
7: if learnerm violates the condition then
8: Learner m uploads δ∇̂km.
9: . Save θ̂km = θk at learner m

10: else
11: No actions at learner m.
12: end if
13: end for
14: Controller updates the policy via (3.12).
15: end for

Table 3.1: A comparison of PG and LAPG for DRL.

α ≤ 1/L, then the objective values satisfy

L(θk+1)−L(θk) ≤ −α
2

∥∥∥∇L(θk)
∥∥∥2

+
3α

2

∥∥∥∥∥ ∑
m∈Mk

c

δ∇̂km

∥∥∥∥∥
2

+
3α

2

∥∥∥∇̂N,TL(θk)−∇TL(θk)
∥∥∥2

+
3α

2

∥∥∥∇TL(θk)−∇L(θk)
∥∥∥2

(3.14)

where δ∇̂km is defined in (3.13) andMk
c is the set of learners that do not upload at iteration k.

In Lemma 6, the first term on the right hand side of (3.14) drives the descent in the objective

of DRL, while the error induced by skipping communication (the second term), the variance of

stochastic policy gradient (the third term), as well as the finite-horizon gradient approximation error

(the fourth term) increase the DRL objective thus impede the optimization progress. Intuitively,

the error induced by skipping communication should be properly controlled so that it is small or

even negligible relative to the magnitude of policy gradients that drives the optimization progress,

and also the variance of policy gradients that originally appears in the PG-type algorithms [123].

To account for these error terms in our algorithmic design, we first quantify the variance of

using mini-batch policy gradient estimation.

Lemma 7 (PG concentration). Under Assumptions 1 and 2, there exists a constant Vm depending

on G, γ, ¯̀
m such that given K and δ ∈ (0, 1), with probability at least 1 − δ/K, for any θ we
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have that ∥∥∥∇̂N,TLm(θ)−∇TLm(θ)
∥∥∥2
≤ 2 log(2K/δ)V 2

m

N
:= σ2

m,N,δ/K (3.15)

where ∇̂N,TLm
(
θ
)

and ∇TLm(θ) are the batch stochastic policy gradient (3.10), and the full

policy gradient for the T -slot truncated objective (3.7), namely, ET ∼P( · |θ)

[∑T
t=1 γ

t`m(st,at)
]
.

Building upon Lemmas 6 and 7, we will include the learner m inMk of (3.13) only if its

current policy gradient has enough innovation relative to the most recently uploaded one; that is, it

satisfies

LAPG condition
∥∥∥δ∇̂km∥∥∥2

≥ 1

α2M2

D∑
d=1

ξd

∥∥∥θk+1−d − θk−d
∥∥∥2

+ 6σ2
m,N,δ/K (3.16)

where {ξd}Dd=1 are constant weights, and σ2
m,N,δ/K is the variance of the policy gradient in (3.15).

The values of {ξd} and D are hyper-parameters and can be optimized case-by-case, and the

variance σ2
m,N,δ/K can be estimated on-the-fly in simulations. In a nutshell, a comparison of PG

and LAPG for solving the DRL problem (3.7) is summarized in Table 3.1.

Regarding our proposed LAPG method, two remarks are in order.

LAPG implementation. With recursive update of the lagged gradients in (3.12) and the lagged

condition in (3.16), implementing LAPG is as simple as PG. The only additional complexity comes

from storing the most recently uploaded policy gradient ∇̂N,TLm(θ̂km) and checking the LAPG

communication condition (3.16). Despite its simplicity, we will further demonstrate that using

lagged policy gradients in DRL can cut down a portion of unnecessary yet costly communication

among learners.

Beyond LAPG. Compared with existing efforts for improving the performance of PG in single-

agent RL settings such as the trust region PG [138], the deterministic PG [149], and the variance-

reduced PG [123], LAPG is not orthogonal to any of them. Instead, LAPG points out an alternating

direction for improving communication efficiency of solving DRL, and can be combined with

these methods to develop even more powerful DRL schemes. Extension to the actor-critic version

of LAPG is also possible to accelerate and stablize the learning processes.

3.4 Finite-sample analysis

In this section, we present the main theorems of LAPG. Before that, we introduce several assump-

tions that serve as the stepping stone for the subsequent analysis.
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Assumption 1: For each state-action pair (s,a), the loss `m(s,a) is bounded as `m(s,a) ∈
[0, ¯̀

m], and thus for each parameter θ, the per-learner cumulative loss is bounded as Lm(θ) ∈
[0, ¯̀

m/(1− γ)].

Assumption 2: For each state-action pair (s,a), and any policy parameter θ ∈ Rd, there exist

constants G and F such that

‖∇ logπ(a|s;θ)‖ ≤ G and

∣∣∣∣ ∂2

∂θi∂θj
logπ(a|s;θ)

∣∣∣∣ ≤ F (3.17)

where θi and θj denote the ith and jth entries of θ, respectively.

Assumption 1 requires the boundedness of the instantaneous loss and thus the discounted

cumulative loss, which is natural and commonly assumed in analyzing RL algorithms, e.g.,

[123, 180, 11]. Assumption 2 requires the score function and its partial derivatives to be bounded,

which can be also satisfied by a wide range of stochastic policies, e.g., parametrized Gaussian

policies [123]. As we will see next, Assumptions 1 and 2 are sufficient to guarantee the smoothness

of the objective function in (3.7).

Lemma 8 (smoothness in cumulative losses). Under Assumptions 1 and 2, for any policy parame-

ter θ ∈ Rd, the accumulated loss Lm(θ) for worker m is Lm-smooth, that is

‖∇Lm(θ1)−∇Lm(θ2)‖ ≤ Lm
∥∥θ1−θ2

∥∥ with Lm :=

(
F +G2 +

2γG2

1− γ

)
γ ¯̀
m

(1− γ)2
(3.18)

where ¯̀
m is the upper bound of the instantaneous loss in Assumption 1, and F , G are constants

bounding the score function in (3.17). Likewise, the overall accumulated loss L(θ) is L-smooth,

that is

‖∇L(θ1)−∇L(θ2)‖ ≤ L
∥∥θ1− θ2

∥∥ with L :=

(
F +G2 +

2γG2

1− γ

)
γ
∑

m∈M
¯̀
m

(1− γ)2
. (3.19)

The smoothness of the objective function is critical in the convergence analyses of many

nonconvex optimization algorithms. Building upon Lemma 8, the subsequent analysis critically

builds on the following Lyapunov function:

Vk := L(θk)− L(θ∗) +
3

2α

D∑
d=1

D∑
τ=d

ξτ

∥∥∥θk+1−d − θk−d
∥∥∥2

(3.20)

where θ∗ is the minimizer of (3.2), and α, {ξτ} are constants that will be determined later.

For the DRL problem in (3.7), LAPG can guarantee the following convergence result.
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Theorem 4 (iteration complexity). Under Assumptions 1 and 2, if the stepsize α and the parame-

ters {ξd} in the LAPG condition (3.16) are chosen such that

α ≤
(
1− 3

∑D
d=1 ξd

)
L

(3.21)

and the constants T , K, and N are chosen satisfying

T = O(log(1/ε)), K = O(1/ε), and N = O(log(K/δ)/ε) (3.22)

then with probability at least 1− δ, the iterates {θk} generated by LAPG satisfy

1

K

K∑
k=1

∥∥∇L(θk)
∥∥2 ≤ 2

αK
V1+ 3σ2

T + 21σ2
N,δ/K ≤ ε (3.23)

where σT and σN,δ/K are some constants depending on T,N, F,G, γ, {¯̀m}.

Theorem 4 demonstrates that even with the adaptive communication rules, LAPG can still

achieve sublinear convergence to the stationary point of (3.7).

Regarding the communication complexity, it would be helpful to first estimate each learner’s

frequency of activating the communication condition (3.16). Ideally, we want those learners with a

small reward thus a small smoothness constant to communicate with the controller less frequently.

This intuition will be formally treated in the next lemma.

Lemma 9 (lazy gradient communication). Under Assumptions 1 and 2, define the task hardness

of every learner m as H(m) := L2
m/L

2. If the constants {ξd} in the communication condition

(3.16) are chosen to be ξD ≤ · · · ≤ ξ1 and the hardness of the learner m satisfies

H(m) ≤ ξd
3dα2L2M2

:= γd (3.24)

then it uploads to the controller at most 1/(d+ 1) fraction of time with probability at least 1− 2δ.

Lemma 9 implies that the communication frequency of each learner is proportional to its task

hardness. In addition, choosing larger trigger constants {ξd} and a smaller stepsize α will reduce

the communication frequencies of all learners. However, such choice of parameters will generally

require much more number of iterations to a targeted accuracy. To formally characterize the overall

communication overhead of solving DRL, we define the communication complexity of solving

the DRL problem (3.2) as the number of needed uploads to achieve ε-policy gradient error; e.g.,
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mink=1,··· ,K ‖∇L(θk)‖2 ≤ ε.
Building upon Theorem 4 and Lemma 9, the communication complexity is established next.

Theorem 5 (communication complexity). Under Assumptions 1 and 2, define ∆C(h; {γd}) as

∆C(h; {γd}) :=

D∑
d=1

(1

d
− 1

d+ 1

)
h (γd) (3.25)

where h is the cumulative density function of the learners’ task hardness, given by

h(γ) :=
1

M

∑
m∈M

1(H(m) ≤ γ). (3.26)

With the communication complexity of LAPG and PG denoted as CLAPG(ε) and CPG(ε), if the

parameters are chosen as (3.22), with probability at least 1− 4δ, we have that

CLAPG(ε) ≤ (1−∆C(h; {γd}))
CPG(ε)

(1− 3
∑D

d=1 ξd)
. (3.27)

Choosing the parameters as Theorem 4, if the heterogeneity function h(γ) satisfies that there exists

γ′ such that γ′ < h(γ′)
(D+1)DM2 , then we have that CLAPG(ε) < CPG(ε).

By carefully designing our communication selection rule, Theorem 5 demonstrates that the

overall communication of LAPG is less than that of PG, provided that the reward functions thus

the smoothness constants of each learner are very heterogeneous. Consider the extreme case where

Lm = O(1), ∀1, . . . ,M − 1, and LM = L = O(M2). One can easily verify that using proper

parameters, LAPG only requires O(1/M) number of communication rounds of vanilla PG.

While the improved communication complexity in Theorem 5 builds on slightly restrictive

dependence on the problem parameters, the LAPG’s empirical performance gain over PG goes far

beyond the above worst-case theoretical analysis, and lies in a much broader DRL setting (e.g.,

h(·) does not satisfy the condition in Theorem 5), which is confirmed by the subsequent numerical

tests.

3.5 Numerical tests

To validate the theoretical results, this section reports the empirical performance of LAPG in the

multi-agent RL task, as an example of DRL. All experiments were performed using Python 3.6

on an Intel i7 CPU @ 3.4 GHz (32 GB RAM) desktop. Throughout this section, we consider
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agent 1

agent 2

agent 3

agent 4

agent 5

Figure 3.2: Multi-agent cooperative navigation task used in the simulation. Specifically, the blue
circles represent the agents, the stars represent the landmarks, the green arrows represent the
agent-cloud communication links, and the gray arrows direct the target landmark each agent aims
to cover.

the simulation environment of the Cooperative Navigation task in [100], which builds on the

popular OpenAI Gym paradigm [21]. In this RL environment, M agents aim to reach a set of M

landmarks through physical movement, which is controlled by a set of five actions {stay, left, right,

up, down}. Agents are connected to a remote central coordinator, and are rewarded based on the

proximity of their position to the one-to-one associated landmark; see a diagram in Figure 3.2.

In the simulation, we modify the environment in [100] from following aspects: i) we assume

the state is globally observable, i.e., the position and velocity of other agents in a two-dimension

grid are observable to each agent; and, ii) each agent has a certain target landmark to cover, and

the individual reward is determined by the proximity to that certain landmark, as well as the

penalty of collision with other agents. In this way, the reward function varies among agents,

and the individual reward of an agent also depends on the other agents’ movement, which is

consistent with the multi-agent RL formulation (3.4). The reward is further scaled by different

positive coefficients, representing the heterogeneity (e.g., different priority) of different agents.

The collaborative goal of the agents is to maximize the network averaged long-term reward so as

to reduce distances to the landmark and avoid collisions. We implement LAPG using G(PO)MDP

gradient estimators, and compare it with the G(PO)MDP-based PG method. The discounting factor

in the cumulative loss is γ = 0.99 in all the tests. For each episode, both algorithms terminate

after T = 20 iterations.

In the first test with M = 2 agents, the targeted local policy of each agent πm(θm) is
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Figure 3.3: Iteration and communication complexity in a heterogeneous environment (Non mo-
mentum). The shaded region in all the figures represents the globally averaged reward distribution
of each scheme within the half standard deviation of the mean.
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Figure 3.4: Iteration and communication complexity in a heterogeneous setting (Momentum).

parameterized by a three-layer neural network, where the first and the second hidden layers

contain 30 and 10 neural units with ReLU as the activation function, and the output layer is the

softmax operator. We run in total N = 10 batch episodes in each Monte Carlo run, and report

the globally averaged reward from 10 Monte Carlo runs. LAPG and PG are first implemented

using gradient descent update for the heterogeneous (scaled reward) case. As shown in Figure 3.3,

LAPG converges within the same number of iterations as PG, and the communication reduction

is observable. To accelerate the training of neural networks used in policy parameterization,

both LAPG and PG are implemented using heavy-ball based momentum update thereafter, where

the stepsize and the momentum factor are set as 0.01 and 0.6, respectively. The corresponding

performance is reported in Figure 3.4 for the heterogeneous case and in Figure 3.5 for the

homogeneous (non-scaled reward) case. Clearly, in both Figures 3.4 and 3.5, our LAPG converges
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Figure 3.5: Iteration and communication complexity in a homogeneous setting (Momentum).
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Figure 3.6: Iteration and communication complexity in a five-agent setting (RELU activation).

within the same number of iterations as the PG algorithm. When it comes to the number of

communication rounds, LAPG requires significantly smaller amount than PG in both homogeneous

and heterogeneous cases. With momentum update, the performance gain of LAPG is larger than

that without momentum update, which is partially due to that both algorithms converge faster in

this case.

In the second test with M = 5, the targeted policy is again parameterized by a three-layer

neural network. For this larger multi-agent RL task, we use a larger network to characterize the

optimal policy, where the first and the second hidden layers contain 50 and 20 neural units. To

reduce the runtime, we only run in total N = 8 batch episodes in each Monte Carlo run, and report

the globally averaged reward from 5 Monte Carlo runs in Figure 3.6 for the heterogeneous case.

It is shown in Figure 3.6 that LAPG successfully converges using the same number of iterations

as PG, but it requires fewer number of communication rounds than PG. The performance gain is
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Figure 3.7: Iteration and communication complexity in a five-agent setting (Softplus).

sizable in terms of communication.

Since RELU-based activation functions may introduce certain nonsmoothness in the resultant

state-to-action distribution mapping, the performance is also evaluated using the softplus activation,

which is a smooth approximation of the RELU activation function. Clearly, the comparison in

Figure 3.7 confirms that LAPG still converges within much fewer number of communication rounds

than PG with the smooth activation functions. These observations shed the light on the potential

applicability of our LAPG algorithm to large-scale DRL problems, when the communication cost

of exchanging policy gradients is high especially using the over-parameterized neural networks as

policy approximators.

3.6 Proofs of lemmas and theorems

3.6.1 Preliminary lemmas

In this section, we introduce several supporting lemmas that will lead to the subsequent convergence

and communication complexity analysis of LAPG.

Define the finite-horizon approximation of the policy gradient (3.8) as

∇TLm(θ) = ET ∼P(T |θ)

[
T∑
t=0

(
t∑

τ=0

∇ logπ(aτ |sτ ;θ)

)
γt`m(st,at)

]
(3.28)
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and its stochastic estimate based on a single-trajectory evaluation as

∇̂TLm(θ) =

T∑
t=0

(
t∑

τ=0

∇ logπ(aτ |sτ ;θ)

)
γt`m(st,at). (3.29)

We have the following lemma that bounds the discrepancy between them.

Lemma 10 (bounded PG deviation). For the finite-horizon approximation of the policy gradient

(3.28) and its corresponding version (3.29), at any θ and any learner m, their discrepancy is

bounded by ∥∥∥∇̂TLm(θ)−∇TLm(θ)∥∥∥ ≤ Vm (3.30)

where Vm is a constant depending on G, γ, ¯̀
m.

Proof: Using the definition of the G(PO)MDP gradient, we have that∥∥∥∇̂TLm(θ)−∇TLm(θ)∥∥∥
=

∥∥∥∥∥
T∑
t=0

(
t∑

τ=0

∇ logπ(aτ |sτ ;θ)

)
γt`m(st,at)− ET ∼P(·|θ)

[
T∑
t=0

(
t∑

τ=0

∇ logπ(aτ |sτ ;θ)

)
γt`m(st,at)

]∥∥∥∥∥
≤2 sup
T ∼P(·|θ)

T∑
t=0

∥∥∥∥∥
(

t∑
τ=0

∇ logπ(aτ |sτ ;θ)

)
γt`m(st,at)

∥∥∥∥∥
(a)

≤2
T∑
t=0

tGγt ¯̀m ≤ 2G¯̀
m

∞∑
t=0

tγt

=
2G¯̀

mγ

(1− γ)2
:= Vm (3.31)

where (a) follows from the upper bounds in Assumptions 1 and 2, and Vm is the uniform upper

bound of the G(PO)MDP stochastic policy gradient.

Lemma 11 (finite horizon approximation). For the infinite-horizon problem (3.2) and its finite-

horizon approximation, for any θ, the corresponding policy gradients are bounded by

‖∇L(θ)−∇TL(θ)‖ ≤
∑
m∈M

G¯̀
m

(
T +

γ

1− γ

)
γT := σT . (3.32)
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Proof: For any θ ∈ Rd, it follows that

‖∇L(θ)−∇TL(θ)‖ =

∥∥∥∥∥ET ∼P(·|θ)

[ ∑
m∈M

∞∑
t=T

(
t∑

τ=0

∇ logπ(aτ |sτ ;θ)

)
γt`m(st,at)

]∥∥∥∥∥
(a)

≤ ET ∼P(·|θ)

[∥∥∥∥∥ ∑
m∈M

∞∑
t=T

(
t∑

τ=0

∇ logπ(aτ |sτ ;θ)

)
γt`m(st,at)

∥∥∥∥∥
]

(b)

≤ ET ∼P(·|θ)

[ ∑
m∈M

∞∑
t=T

∥∥∥∥∥
(

t∑
τ=0

∇ logπ(aτ |sτ ;θ)

)
γt`m(st,at)

∥∥∥∥∥
]

(c)

≤ ET ∼P(·|θ)

[ ∑
m∈M

∞∑
t=T

tGγt ¯̀m

]
=ET ∼P(·|θ)

[ ∑
m∈M

G¯̀
m

∞∑
t=T

tγt

]
(3.33)

where (a) uses the Jensen’s inequality, (b) follows from the triangular inequality, and (c) uses

the bounds on the loss and the score functions in Assumptions 1 and 2. We can calculate the

summation as
∞∑
t=T

tγt =

(
T

1− γ +
γ

(1− γ)2

)
γT . (3.34)

Plugging (3.34) into (3.33) leads to

‖∇L(θ)−∇TL(θ)‖ ≤ ET ∼P(·|θ)

[ ∑
m∈M

G¯̀
m

∞∑
t=T

tγt

]
=
∑
m∈M

G¯̀
m

(
T +

γ

1− γ

)
γT

1− γ
(3.35)

from which the proof is complete.

3.6.2 Proof of Lemma 7

The policy gradient concentration result in Lemma 7 builds on the following concentration

inequality.

Lemma 12 (concentration inequality [127]). If X1,X2, · · · ,XN ∈ Rd denote a vector-valued

martingale difference sequence satisfying E[Xn|X1, · · · ,Xn−1] = 0, and ‖Xn‖ ≤ V, ∀n, then

for any scalar δ ∈ (0, 1], we have

P

∥∥∥∥∥
N∑
n=1

Xn

∥∥∥∥∥
2

> 2 log(2/δ)V 2N

 ≤ δ. (3.36)

Therefore, viewing Xn := ∇̂TLm
(
θ
)
−∇TLm

(
θ
)
, and using the bounded PG deviation in
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Lemma 10, we can readily arrive at Lemma 7.

3.6.3 Proof of Lemma 8

For any θ1,θ2 ∈ Rd, it follows that

‖∇Lm(θ1)−∇Lm(θ2)‖ =

∥∥∥∥∥ET ∼P(·|θ1)

[ ∞∑
t=0

(
t∑

τ=0

∇ logπ(aτ |sτ ;θ1)

)
γt`m(st,at)

]

−ET ∼P(·|θ2)

[ ∞∑
t=0

(
t∑

τ=0

∇ logπ(aτ |sτ ;θ1)

)
γt`m(st,at)

]

+ET ∼P(·|θ2)

[ ∞∑
t=0

(
t∑

τ=0

∇ logπ(aτ |sτ ;θ1)

)
γt`m(st,at)

]

−ET ∼P(·|θ2)

[ ∞∑
t=0

(
t∑

τ=0

∇ logπ(aτ |sτ ;θ2)

)
γt`m(st,at)

]∥∥∥∥∥.
(3.37)

We can bound the first difference term in (3.37) as (cf. use T ∼ θ1 for T ∼ P(·|θ1))∥∥∥∥∥ET ∼θ1

[ ∞∑
t=0

(
t∑

τ=0

∇ logπ(aτ |sτ ;θ1)

)
γt`m(st,at)

]
−ET ∼θ2

[ ∞∑
t=0

(
t∑

τ=0

∇ logπ(aτ |sτ ;θ1)

)
γt`m(st,at)

]∥∥∥∥∥
=

∥∥∥∥∥
∫

P(T |θ1)

∞∑
t=0

(
t∑

τ=0

∇ logπ(aτ |sτ ;θ1)

)
γt`m(st,at)− P(T |θ2)

∞∑
t=0

(
t∑

τ=0

∇ logπ(aτ |sτ ;θ1)

)
γt`m(st,at)dT

∥∥∥∥∥
=

∥∥∥∥∥
∞∑
t=0

∫
P(Tt|θ1)

(
t∑

τ=0

∇ logπ(aτ |sτ ;θ1)

)
γt`m(st,at)− P(Tt|θ2)

(
t∑

τ=0

∇ logπ(aτ |sτ ;θ1)

)
γt`m(st,at)dTt

∥∥∥∥∥
≤
∞∑
t=0

∫ ∥∥∥∥∥(P(Tt|θ1)− P(Tt|θ2)
)( t∑

τ=0

∇ logπ(aτ |sτ ;θ1)

)
γt`m(st,at)

∥∥∥∥∥dTt
≤
∞∑
t=0

∫ ∣∣∣P(Tt|θ1)− P(Tt|θ2)
∣∣∣∥∥∥∥∥
(

t∑
τ=0

∇ logπ(aτ |sτ ;θ1)

)
γt`m(st,at)

∥∥∥∥∥dTt (3.38)

where we use Tt for a t-slot trajectory {s0,a0, s1,a1, · · · , st−1,at−1}.
For the remaining difference term in (3.38), we can bound it as

∣∣∣P(Tt|θ1)− P(Tt|θ2)
∣∣∣ =

∣∣∣∣∣ρ(s0)

t−1∏
ν=0

π(aν |sν ;θ1)P(sν+1|sν ,aν)− ρ(s0)

t−1∏
ν=0

π(aν |sν ;θ2)P(sν+1|sν ,aν)

∣∣∣∣∣
=ρ(s0)

t−1∏
ν=0

P(sν+1|sν ,aν)

∣∣∣∣∣
t−1∏
ν=0

π(aν |sν ;θ1)−
t−1∏
ν=0

π(aν |sν ;θ2)

∣∣∣∣∣



59

=ρ(s0)

t−1∏
ν=0

P(sν+1|sν ,aν)

∣∣∣∣∣
t−1∏
t=0

π(aν |sν ;θ1)−
t−1∏
ν=0

π(aν |sν ;θ2)

∣∣∣∣∣
=ρ(s0)

t−1∏
ν=0

P(sν+1|sν ,aν)

∣∣∣∣∣(θ1 − θ2)>∇
t−1∏
ν=0

π(aν |sν ; θ̃)

∣∣∣∣∣. (3.39)

Note that we have∣∣∣∣∣(θ1 − θ2)>∇
t−1∏
ν=0

π(aν |sν ; θ̃)

∣∣∣∣∣ =

∣∣∣∣∣(θ1 − θ2)>∇ log
t−1∏
ν=0

π(aν |sν ; θ̃)
t−1∏
ν=0

π(aν |sν ; θ̃)

∣∣∣∣∣
=

t−1∏
ν=0

π(aν |sν ; θ̃)

∣∣∣∣∣(θ1 − θ2)>∇ log
t−1∏
ν=0

π(aν |sν ; θ̃)

∣∣∣∣∣
≤

t−1∏
ν=0

π(aν |sν ; θ̃)
∥∥∥ t−1∑
ν=0

∇ logπ(aν |sν ; θ̃)
∥∥∥∥∥∥θ1 − θ2

∥∥∥
≤ tG

∥∥∥θ1 − θ2

∥∥∥ t−1∏
ν=0

π(aν |sν ; θ̃) (3.40)

and if plugging (3.39) and (3.40) into (3.38), it follows that

∞∑
t=0

∫ ∣∣∣P(Tt|θ1)− P(Tt|θ2)
∣∣∣∥∥∥∥∥
(

t∑
τ=0

∇ logπ(aτ |sτ ;θ1)

)
γt`m(st,at)

∥∥∥∥∥dTt
≤
∞∑
t=0

∫
ρ(s0)

t−1∏
ν=0

P(sν+1|sν ,aν)π(aν |sν ; θ̃)tG
∥∥∥θ1 − θ2∥∥∥

∥∥∥∥∥
(

t∑
τ=0

∇ logπ(aτ |sτ ;θ1)

)
γt`m(st,at)

∥∥∥∥∥dTt
≤
∞∑
t=0

∫
P(Tt|θ̃)tG

∥∥∥θ1 − θ2∥∥∥tGγt ¯̀mdTt =

∞∑
t=0

t2G2γt ¯̀m

∥∥∥θ1 − θ2∥∥∥
=

(
γ

(1− γ)2
+

2γ2

(1− γ)3

)
G2 ¯̀

m

∥∥∥θ1 − θ2∥∥∥ (3.41)

where we use the equation that
∑∞

t=0 t
2γt = γ

(1−γ)2
+ 2γ2

(1−γ)3
.

We can separably bound the second difference term in (3.37) as∥∥∥∥∥ET ∼θ2

[ ∞∑
t=0

(
t∑

τ=0

∇ logπ(at|st;θ1)

)
γt`m(st,at)

]
−ET ∼θ2

[ ∞∑
t=0

(
t∑

τ=0

∇ logπ(at|st;θ2)

)
γt`m(st,at)

]∥∥∥∥∥
≤
∫

P(T |θ2)

∥∥∥∥∥
∞∑
t=0

(
t∑

τ=0

∇ logπ(at|st;θ1)

)
γt`m(st,at)−

∞∑
t=0

(
t∑

τ=0

∇ logπ(at|st;θ2)

)
γt`m(st,at)

∥∥∥∥∥dT
≤
∫

P(T |θ2)

∞∑
t=0

γt`m(st,at)

t∑
τ=0

∥∥∥∇ logπ(at|st;θ1)−∇ logπ(at|st;θ2)
∥∥∥dT
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≤
∫

P(T |θ2)

∞∑
t=0

γt ¯̀m

t∑
τ=0

F
∥∥θ1 − θ2∥∥dT ≤ ∞∑

t=0

γt ¯̀mtF
∥∥θ1 − θ2∥∥ =

F ¯̀
mγ

(1− γ)2
∥∥θ1 − θ2∥∥. (3.42)

Combining (3.41) and (3.42), we have that

‖∇Lm(θ1)−∇Lm(θ2)‖ ≤
(

F

(1− γ)2
+

(
1

(1− γ)2
+

2γ

(1− γ)3

)
G2

)
γ ¯̀
m

∥∥θ1 − θ2

∥∥
:= Lm

∥∥θ1 − θ2

∥∥. (3.43)

Similarly, we can bound the Lipschitz constant of∇L(θ),∇TL(θ),∇TLm(θ), and the proof is

complete.

3.6.4 Proof of Lemma 6

Using the smoothness of Lm thus L in Lemma 8, we have that

L(θk+1)− L(θk) ≤
〈
∇L(θk),θk+1 − θk

〉
+
L

2

∥∥∥θk+1 − θk
∥∥∥2
. (3.44)

Note that (3.13) can be also written as (cf. ∇̂N,TL
(
θk
)

:=
∑
m∈M ∇̂N,TLm

(
θk
)
)

θk+1 = θk − α
∑
m∈M

∇̂N,TLm
(
θk
)
− α

∑
m∈Mk

c

(
∇̂N,TLm

(
θ̂k−1
m

)
− ∇̂N,TLm

(
θk
))

(3.45)

= θk − α∇̂N,TL
(
θk
)

+ α
∑

m∈Mk
c

δ∇̂km (3.46)

whereMk
c is the set of agents that do not communicate with the controller at iteration k.

Plugging (3.45) into
〈
∇L(θk),θk+1 − θk

〉
leads to (cf. θ̂km = θ̂k−1

m , ∀m ∈Mk
c )

〈
∇L(θk),θk+1 − θk

〉
=− α

〈
∇L(θk), ∇̂N,TL

(
θk
)
−
∑

m∈Mk
c

δ∇̂km

〉

=− α
〈
∇L(θk),∇L(θk)−∇L(θk) + ∇̂N,TL

(
θk
)
−
∑

m∈Mk
c

δ∇̂km

〉

=− α
∥∥∥∇L(θk)

∥∥∥2
− α

〈
∇L(θk), ∇̂N,TL

(
θk
)
−∇L(θk)−

∑
m∈Mk

c

δ∇̂km

〉
.

(3.47)
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Using 2a>b = ‖a‖2 + ‖b‖2 − ‖a− b‖2, we can re-write the inner product in (3.47) as〈
−∇L(θk), ∇̂N,TL

(
θk
)
−∇L(θk)−

∑
m∈Mk

c

δ∇̂km

〉

=
1

2

∥∥∥∇L(θk)
∥∥∥2

+
1

2

∥∥∥∥∥∇̂N,TL(θk)−∇L(θk)−
∑

m∈Mk
c

δ∇̂km

∥∥∥∥∥
2

− 1

2

∥∥∥∥∥∇̂N,TL(θk)− ∑
m∈Mk

c

δ∇̂km

∥∥∥∥∥
2

(a)
=

1

2

∥∥∥∇L(θk)
∥∥∥2

+
1

2

∥∥∥∥∥∇̂N,TL(θk)−∇L(θk)−
∑

m∈Mk
c

δ∇̂km

∥∥∥∥∥
2

− 1

2α2

∥∥∥θk+1 − θk
∥∥∥2

(3.48)

where (a) follows from the LAPG update (3.45).

Define the policy gradient for the finite-horizon discounted reward as

∇TL(θ) :=
∑
m∈M
∇TLm(θ) with ∇TLm(θ) = ET ∼P(·|θ)

[
∇ log P(T |θ)

(
T∑
t=0

γt`m(st,at)

)]
(3.49)

and decompose the second term in (3.48) as∥∥∥∇̂N,TL(θk)−∇L(θk)−
∑

m∈Mk
c

δ∇̂km
∥∥∥2

=
∥∥∥∇̂N,TL(θk)−∇TL(θk) +∇TL(θk)−∇L(θk)−

∑
m∈Mk

c

δ∇̂km
∥∥∥2

(b)
=3
∥∥∥∇̂N,TL(θk)−∇TL(θk)

∥∥∥2
+ 3
∥∥∥∇TL(θk)−∇L(θk)

∥∥∥2
+ 3
∥∥∥ ∑
m∈Mk

c

δ∇̂km
∥∥∥2

(3.50)

where (b) follows from the inequality ‖a + b + c‖2 ≤ 3‖a‖2 + 3‖b‖2 + 3‖c‖2. Combining

(3.47), (3.48) and (3.50), and plugging into (3.44), the claim of Lemma 6 follows.

3.6.5 Proof of Theorem 4

Using the definition of Vk in (3.20), it follows that (with the short-hand notation βd := 3
2α

∑D
τ=d ξτ )

Vk+1 − Vk =L(θk+1)− L(θk) +

D∑
d=1

βd

∥∥∥θk+2−d − θk+1−d
∥∥∥2 − D∑

d=1

βd

∥∥∥θk+1−d − θk−d
∥∥∥2

(a)

≤−α
2

∥∥∥∇L(θk)
∥∥∥2+

3α

2

∥∥∥∥∥ ∑
m∈Mk

c

δ∇̂km

∥∥∥∥∥
2

+

D∑
d=2

βd

∥∥∥θk+2−d−θk+1−d
∥∥∥2+

3α

2

∥∥∥∇̂N,TL(θk)−∇TL(θk)
∥∥∥2
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+

(
L

2
− 1

2α
+ β1

)∥∥∥θk+1−θk
∥∥∥2− D∑

d=1

βd

∥∥∥θk+1−d−θk−d
∥∥∥2+ 3α

2

∥∥∥∇TL(θk)−∇L(θk)
∥∥∥2

(3.51)

where (a) uses (3.14) in Lemma 6.

Using (
∑N

n=1 an)2 ≤ N∑N
n=1 a

2
n, it follows that

∥∥∥∥∥ ∑
m∈Mk

c

δ∇̂km

∥∥∥∥∥
2

=

∥∥∥∥∥ ∑
m∈Mk

c

∇Lm
(
θ̂km
)
−∇Lm

(
θk
)∥∥∥∥∥

2

(3.52a)

≤
∣∣∣Mk

c

∣∣∣ ∑
m∈Mk

c

∥∥∥∇Lm(θ̂km)−∇Lm(θk)∥∥∥2
(3.52b)

(b)

≤ |M
k
c |2

α2M2

D∑
d=1

ξd

∥∥∥θk+1−d − θk−d
∥∥∥2

+ 6σ2
N,δ/K (3.52c)

where (b) uses the communication trigger condition (3.16), and the fact that σ2
N,δ/K = M

∑
m∈M σ2

m,N,δ/K .

Plugging (3.52) into (3.51), we have (for convenience, define βD+1 = 0 in the analysis)

Vk+1 − Vk

≤− α

2

∥∥∥∇L(θk)
∥∥∥2

+
D∑
d=1

(
3ξd
∣∣Mk

c

∣∣2
2αM2

− βd + βd+1

)∥∥∥θk+1−d− θk−d
∥∥∥2

+ 9ασ2
N,δ/K

+

(
L

2
− 1

2α
+ β1

)∥∥∥θk+1−θk
∥∥∥2

+
3α

2

∥∥∥∇TL(θk)−∇L(θk)
∥∥∥2

+
3α

2

∥∥∥∇̂N,TL(θk)−∇TL(θk)
∥∥∥2
.

(3.53)

After defining some constants to simplify the notation, the proof is then complete.

Furthermore, using βd := 3
2α

∑D
τ=d ξτ , if the stepsize α, and the trigger constants {ξd} satisfy

α ≤
(
1− 3

∑D
d=1 ξd

)
L

(3.54)

then it is easy to verify that all the parentheses of (3.53) are all nonpositive. Hence, we have that

the descent in Lyapunov function is bounded as

Vk+1 − Vk

≤ −α
2

∥∥∥∇L(θk)
∥∥∥2

+
3α

2

∥∥∥∇TL(θk)−∇L(θk)
∥∥∥2

+
3α

2

∥∥∥∇̂N,TL(θk)−∇TL(θk)
∥∥∥2

+ 9ασ2
N,δ/K .

(3.55)



63

Rearranging terms in (3.55), and summing up over k = 1, · · · ,K, we have

1

K

K∑
k=1

∥∥∥∇L(θk)
∥∥∥2 ≤ 2

αK
V1+

3

K

K∑
k=1

∥∥∥∇TL(θk)−∇L(θk)
∥∥∥2+ 3

K

K∑
k=1

∥∥∥∇̂N,TL(θk)−∇TL(θk)
∥∥∥2+ 18σ2

N,δ/K

(c)

≤ 2

αK
V1+ 3σ2

T + 21σ2
N,δ/K , w.p. 1− δ (3.56)

where (c) follows from the finite-horizon truncation error in Lemma 11, and the gradient concen-

tration result in Lemma 7 together with the union bound.

Therefore, using Lemmas 7 and 11, it readily follows that there exist T = O(log(1/ε)),

K = O(1/ε), and N = O (log(K/δ)/ε) such that

1

K

K∑
k=1

∥∥∥∇L(θk)
∥∥∥2
≤ 2

αK
V1+ 3σ2

T + 21σ2
N,δ/K ≤ ε, w.p. 1− δ (3.57)

from which the proof is complete.

3.6.6 Proof of Lemma 9

The idea is essentially to show that if (3.24) holds, then the learner m will not violate the LAPG

conditions in (3.16) so that does not upload, if it has uploaded at least once during the last d

iterations.
To prove this argument, for the difference of two policy gradient evaluations, we have that∥∥∥∇̂N,TLm(θ̂k−1m )− ∇̂N,TLm(θk)

∥∥∥2
=
∥∥∥∇̂N,TLm(θ̂k−1m )−∇TLm(θ̂k−1m ) +∇TLm(θ̂k−1m )−∇TLm(θk) +∇TLm(θk)− ∇̂N,TLm(θk)

∥∥∥2
(a)

≤3
∥∥∥∇̂N,TLm(θ̂k−1m )−∇TLm(θ̂k−1m )

∥∥∥2+ 3
∥∥∥∇TLm(θ̂k−1m )−∇TLm(θk)

∥∥∥2+ 3
∥∥∥∇TLm(θk)−∇̂N,TLm(θk)

∥∥∥2
(b)

≤6σ2
m,N,δ + 3

∥∥∥∇TLm(θ̂k−1m )−∇TLm(θk)
∥∥∥2, w.p. 1− 2δ/K

(c)

≤6σ2
m,N,δ + 3L2

m

∥∥∥θ̂k−1m − θk
∥∥∥2 , w.p. 1− 2δ/K (3.58)

where (a) uses ‖a + b + c‖2 ≤ 3‖a‖2 + 3‖b‖2 + 3‖c‖2; (b) uses Lemma 12 twice; and (c)

follows from the smoothness property in Lemma 8.

Furthermore, suppose at iteration k, the most recent iteration that the learner m did communi-

cate with the controller is iteration k − d′ with 1 ≤ d′ ≤ d. Thus, we have θ̂k−1
m = θk−d

′
, which
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implies that

6σ2
m,N,δ + 3L2

m

∥∥∥θ̂k−1
m − θk

∥∥∥2
= 6σ2

m,N,δ + 3L2
m

∥∥∥θk−d′ − θk∥∥∥2

= 6σ2
m,N,δ + 3d′L2H(m)

d′∑
b=1

∥∥∥θk+1−b − θk−b
∥∥∥2

(d)

≤ 6σ2
m,N,δ +

ξd
α2M2

d′∑
b=1

∥∥∥θk+1−b − θk−b
∥∥∥2

(e)

≤ 6σ2
m,N,δ +

∑D
b=1 ξb

∥∥θk+1−b − θk−b
∥∥2

α2M2
(3.59)

where (d) follows since the condition (3.24) is satisfied, so that

H(m) ≤ ξd
3dα2L2M2

≤ ξd
3d′α2L2M2

(3.60)

and (e) follows from our choice of {ξd} such that for 1 ≤ d′ ≤ d, we have ξd ≤ ξd′ ≤ . . . ≤ ξ1

and ‖θk+1−b−θk−b‖2 ≥ 0. Since (3.59) is exactly the RHS of (3.16), the trigger condition (3.16)

will not be activated, and the learner m does not communicate with the controller at iteration k.

Note that the above argument holds for any 1 ≤ d′ ≤ d, and thus if (3.24) holds, the learner

m communicates with the controller at most every other d iterations. Since (3.58) holds with

probability 1− 2δ/K, by using union bound, this argument holds with probability 1− 2δ for all

k ∈ {1, · · · ,K}.

3.6.7 Proof of Theorem 5

Recalling the Lyapunov function (3.20), we have

Vk := L(θk)− L(θ∗) +
D∑
d=1

3
∑D

j=d ξj

2α

∥∥∥θk+1−d − θk−d
∥∥∥2

(3.61)

Using (3.55) in the proof of Theorem 4, and choosing the stepsize as α = 1
L

(
1− 3

∑D
d=1 ξd

)
, we

have

Vk+1−Vk ≤ −α
2

∥∥∥∇L(θk)
∥∥∥2

+
3α

2

∥∥∥∇TL(θk)−∇L(θk)
∥∥∥2

+
3α

2

∥∥∥∇̂N,TL(θk)−∇TL(θk)
∥∥∥2

+9ασ2
N,δ/K .

(3.62)
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Summing up both sides from k = 1, . . . ,K, and initializing θ1−D = · · · = θ0 = θ1, we have

1

K

K∑
k=1

∥∥∥∇L(θk)
∥∥∥2 ≤ 2L

[
L(θ1)− L(θ∗)

]
(1− 3

∑D
d=1 ξd)K

+ 3
∥∥∥∇TL(θk)−∇L(θk)

∥∥∥2+ 3
∥∥∥∇̂N,TL(θk)−∇TL(θk)

∥∥∥2+ 18σ2
N,δ/K

≤ 2L
[
L(θ1)− L(θ∗)

]
(1− 3

∑D
d=1 ξd)K

+ 3σ2
T + 21σ2

N,δ/K , w.p. 1− δ (3.63)

With regard to PG, following the standard analysis, it can guarantee that

1

K

K∑
k=1

∥∥∥∇L(θk)
∥∥∥2
≤ 2L

K

[
L(θ1)− L(θ∗)

]
+ 3
∥∥∥∇TL(θk)−∇L(θk)

∥∥∥2
+ 3
∥∥∥∇̂N,TL(θk)−∇TL(θk)

∥∥∥2

≤ 2L

K

[
L(θ1)− L(θ∗)

]
+ 3σ2

T + 3σ2
N,δ/K , w.p. 1− δ (3.64)

If the parameters T and N are chose large enough (cf. (3.22)), so the first term in the RHS of

(3.63) and (3.64) dominates the rest two error terms. Therefore, to achieve the same ε-gradient

error, with probability 1− 2δ, the number of needed iterations under LAPG is (1− 3
∑D

d=1 ξd)
−1

times that of PG. Similar to the derivations in [31, Proposition 1], using Lemma 9, we can show

that the LAPG’s average communication rounds per iteration is (1−∆C̄(h; {γd})) times that of

PG with probability 1− 2δ, we arrive at (3.27) with probability 1− 4δ.

If we choose the parameters as

ξ1 = ξ2 = . . . = ξD = ξ and α =
1− 3Dξ

L
and γd =

ξ/d

3α2L2M2
, d = 1, . . . , D. (3.65)

As h(·) is non-decreasing, if γD ≥ γ′, it readily follows that h(γD) ≥ h(γ′). Together with the

definition of ∆C̄(h; {γd}) in (3.25), we arrive at

∆C̄(h; {γd}) =
D∑
d=1

(
1

d
− 1

d+ 1

)
h (γd) ≥

D∑
d=1

(
1

d
− 1

d+ 1

)
h (γD) ≥ D

D + 1
h(γ′). (3.66)

Therefore, the total communication are reduced if the following relation is satisfied

CLAPG(ε)

CPG(ε)
=
(

1− D

D + 1
h(γ′)

)
· 1

1− 3Dξ
< 1 (3.67)

which holds if we have h(γ′) > 3(D + 1)ξ. On the other hand, the condition γD ≥ γ′ requires

ξ/D ≥ γ′(1−Dξ)2M2. (3.68)
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Clearly, if ξ > γ′DM2, then (3.68) holds. In all, if we have

γ′ <
ξ

DM2
<

h(γ′)

3(D + 1)DM2
(3.69)

then CLAPG(ε) ≤ CPG(ε) in Theorem 5 holds with probability 1− 4δ.



Chapter 4

Statistical learning viewpoint of
network resource management

4.1 Introduction

In the era of big data analytics, cloud computing and Internet of Things, the growing demand for

massive data processing challenges existing resource allocation approaches. Huge volumes of

data acquired by distributed sensors in the presence of operational uncertainties caused by, e.g.,

renewable energy, call for scalable and adaptive network control schemes. Scalability of a desired

approach refers to low complexity and amenability to distributed implementation, while adaptivity

implies capability of online adjustment to dynamic environments.

4.1.1 Related work

Allocation of network resources can be traced back to the seminal work of [162]. Since then,

popular allocation algorithms operating in the dual domain are first-order methods based on

dual gradient ascent, either deterministic [99] or stochastic [53, 116]. Thanks to their simple

computation and implementation, these approaches have attracted a great deal of recent interest,

and have been successfully applied to cloud, transportation and power grid networks; see, e.g.,

[28, 35, 58, 155]. However, their major limitation is slow convergence, which results in high

network delay. Depending on the application domain, the delay can be viewed as workload

queuing time in a cloud network, traffic congestion in a transportation network, or energy level

of batteries in a power network. To address this delay issue, recent attempts aim at accelerating

67
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first- and second-order optimization algorithms [12, 97, 170, 178]. Specifically, momentum-

based accelerations over first-order methods were investigated using Nesterov [12], or, heavy-ball

iterations [97]. Though these approaches work well in static settings, their performance degrades

with online scheduling, as evidenced by the increase in accumulated steady-state error [175]. On

the other hand, second-order methods such as the decentralized quasi-Newton approach and its

dynamic variant developed in [170] and [178], incur high overhead to compute and communicate

the decentralized Hessian approximations.

Capturing prices of resources, Lagrange multipliers play a central role in stochastic resource

allocation algorithms [70]. Given abundant historical data in an online optimization setting, a

natural question arises: Is it possible to learn the optimal prices from past data, so as to improve

the performance of online resource allocation strategies? The rationale here is that past data

contain statistics of network states, and learning from them can aid coping with the stochasticity

of future resource allocation. A recent work in this direction is [69], which considers resource

allocation with a finite number of possible network states and allocation actions. The learning

procedure, however, involves constructing a histogram to estimate the underlying distribution

of the network states, and explicitly solves an empirical dual problem. While constructing a

histogram is feasible for a probability distribution with finite support, quantization errors and

prohibitively high complexity are inevitable for a continuous distribution with infinite support.

4.1.2 Our contributions

In this context, the present paper aims to design a novel online resource allocation algorithm

that leverages online learning from historical data for stochastic optimization of the ensuing

allocation stage. The resultant approach, which we term “learn-and-adapt” stochastic dual gradient

(LA-SDG) method, only doubles computational complexity of the classic stochastic dual gradient

(SDG) method. With this minimal cost, LA-SDG mitigates steady-state oscillation, which is

common in stochastic first-order acceleration methods [175, 97], while avoiding computation of

the Hessian approximations present in the second-order methods [170, 178]. Specifically, LA-SDG

only requires one more past sample to compute an extra stochastic dual gradient, in contrast to

constructing costly histograms and solving the resultant large-scale problem [69].

The main contributions of this paper are summarized next.

c1) Targeting a low-complexity online solution, LA-SDG only takes an additional dual gradient

step relative to the classic SDG iteration. This step enables adapting the resource allocation

strategy through learning from historical data. Meanwhile, LA-SDG is linked with the
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stochastic heavy-ball method, nicely inheriting its fast convergence in the initial stage, while

reducing its steady-state oscillation.

c2) The novel LA-SDG approach, parameterized by a positive constant µ, provably yields an

attractive cost-delay tradeoff [µ, log2(µ)/
√
µ], which improves upon the standard tradeoff

[µ, 1/µ] of the SDG method [116]. Numerical tests further corroborate the performance

gain of LA-SDG over existing resource allocation schemes.

4.2 Network resource management

In this section, we start with a generic network model and its resource allocation task in Section

4.2.1, and then introduce a specific example of resource allocation in cloud networks in Section

4.2.2. The proposed approach is applicable to more general network resource allocation tasks such

as geographical load balancing in cloud networks [28], traffic control in transportation networks

[58], and energy management in power networks [155].

4.2.1 A unified resource allocation model

Consider discrete time t ∈ N, and a network represented as a directed graph G = (I, E) with nodes

I := {1, . . . , I} and edges E := {1, . . . , E}. Collect the workloads across edges e = (i, j) ∈ E
in a resource allocation vector xt ∈ RE . The I × E node-incidence matrix is formed with the

(i, e)-th entry

A(i,e) =


1, if link e enters node i

−1, if link e leaves node i

0, else.

(4.1)

We assume that each row of A has at least one −1 entry, and each column of A has at most one

−1 entry, meaning that each node has at least one outgoing link, and each link has at most one

source node. With ct ∈ RI+ collecting the randomly arriving workloads of all nodes per slot t, the

aggregate (endogenous plus exogenous) workloads of all nodes are Axt + ct. If the i-th entry of

Axt + ct is positive, there is service residual queued at node i; otherwise, node i over-serves the

current arrival. With a workload queue per node, the queue length vector qt := [q1
t , . . . , q

I
t ]> ∈ RI+

obeys the recursion

qt+1 = [qt + Axt + ct]
+, ∀t (4.2)
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where qt can represent the amount of user requests buffered in data queues, or energy stored in

batteries, and ct is the corresponding exogenously arriving workloads or harvested renewable

energy of all nodes per slot t. Defining Ψt(xt) := Ψ(xt;φt) as the aggregate network cost

parameterized by the random vector φt, the local cost per node i is Ψi
t(xt) := Ψi(xt;φ

i
t), and

Ψt(xt) =
∑

i∈I Ψi
t(xt). The model here is quite general. The duration of time slots can vary from

(micro-)seconds in cloud networks, minutes in road networks, to even hours in power networks;

the nodes can present the distributed front-end mapping nodes and back-end data centers in cloud

networks, intersections in traffic networks, or, buses and substations in power networks; the

links can model wireless/wireline channels, traffic lanes, and power transmission lines; while the

resource vector xt can include the size of data workloads, the number of vehicles, or the amount

of energy.

Concatenating the random parameters into a random state vector st := [φ>t , c
>
t ]>, the resource

allocation task is to determine the allocation xt in response to the observed (realization) st “on the

fly,” so as to minimize the long-term average network cost subject to queue stability at each node,

and operation feasibility at each link. Concretely, we have

Ψ∗ := min
{xt,∀t}

lim
T→∞

1

T

T∑
t=1

E [Ψt(xt)] (4.3a)

s.t. qt+1 = [qt + Axt + ct]
+, ∀t (4.3b)

lim
T→∞

1

T

T∑
t=1

E [qt] <∞ (4.3c)

xt ∈ X := {x |0 ≤ x ≤ x̄}, ∀t (4.3d)

where Ψ∗ is the optimal objective of problem (4.3), which includes also future information; E is

taken over st := [φ>t , c
>
t ]> as well as possible randomness of optimization variable xt; constraints

(4.3c) ensure queue stability1; and (4.3d) confines the instantaneous allocation variables to stay

within a time-invariant box constraint set X , which is specified by, e.g., link capacities, or,

server/generator capacities.

The queue dynamics in (4.3b) couple the optimization variables over an infinite time horizon,

which implies that the decision variable at the current slot will have effect on all the future

decisions. Therefore, finding an optimal solution of (4.3) calls for dynamic programming [17],

which is known to suffer from the “curse of dimensionality” and intractability in an online setting.
1Here we focus on the strong stability given by [116, Definition 2.7], which requires the time-average expected

queue length to be finite.
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In Section 4.3.1, we will circumvent this obstacle by relaxing (4.3b)-(4.3c) to limiting average

constraints, and employing dual decomposition techniques.

4.2.2 Motivating setup

The geographic load balancing task in a cloud network [28, 163, 33] takes the form of (4.3) with

J mapping nodes (e.g., DNS servers) indexed by J := {1, . . . , J}, K data centers indexed by

K := {J + 1, . . . , J +K}. To match the definition in Section 4.2.1, consider a virtual outgoing

node (indexed by 0) from each data center, and let (k, 0) represent this outgoing link. Define

further the node set I := J ⋃K that includes all nodes except the virtual one, and the edge set

E := {(j, k), ∀j ∈J , k ∈K}⋃{(k, 0), ∀k ∈K} that contains links connecting mapping nodes

with data centers, and outgoing links from data centers.

Per slot t, each mapping node j collects the amount of user data requests cjt , and forwards

the amount xjkt on its link to data center k constrained by the bandwidth availability. Each data

center k schedules workload processing xk0
t according to its resource availability. The amount

xk0
t can be also viewed as the resource on its virtual outgoing link (k, 0). The bandwidth limit

of link (j, k) is x̄jk, while the resource limit of data center k (or link (k, 0)) is x̄k0
t . Similar

to those in Section 4.2.1, we have the optimization vector xt := {xijt , ∀(i, j) ∈ E} ∈ R|E|,

ct := [c1
t , . . . , c

J
t , 0 . . . , 0]> ∈RJ+K , and x̄ := {x̄ijt , ∀(i, j)∈ E} ∈R|E|. With these notational

conventions, we have an |I| × |E| node-incidence matrix A as in (4.1). At each mapping node and

data center, undistributed or unprocessed workloads are buffered in queues obeying (4.3b) with

queue length qt ∈ RJ+K
+ ; see also the system diagram in Fig. 4.1.

Performance is characterized by the aggregate cost of power consumed at the data centers plus

the bandwidth costs at the mapping nodes, namely

Ψt(xt) :=
∑
k∈K

Ψk
t (x

k0
t )︸ ︷︷ ︸

power cost

+
∑
j∈J

∑
k∈K

Ψjk
t (xjkt )︸ ︷︷ ︸

bandwidth cost

. (4.4)

The power cost Ψk
t (x

k0
t ) := Ψk(xk0

t ;φkt ), parameterized by the random vector φkt , captures the

local marginal price, and the renewable generation at data center k during time period t. The

bandwidth cost Ψjk
t (xjkt ) := Ψjk(xjkt ;φjkt ), parameterized by the random vector φjkt , character-

izes the heterogeneous cost of data transmission due to spatio-temporal differences. To match the

unified model in Section II-A, the local cost at data center k ∈ K is its power cost Ψk
t (x

k0
t ), and

the local cost at mapping node j ∈ J becomes Ψj
t ({xjkt }) :=

∑
k∈KΨjk

t (xjkt ). Hence, the cost

in (4.4) can be also written as Ψt(xt) :=
∑

i∈I Ψi
t(xt). Aiming to minimize the time-average of
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Data centerMapping node

Figure 4.1: A diagram of online geographical load balancing. Per time t, mapping node j has
an exogenous workload cjt plus that stored in the queue qjt , and schedules workload xjkt to data
center k. Data center k serves an amount of workload xk0

t out of all the assigned xjkt as well as
that stored in the queue qkt . The thickness of each edge is proportional to its capacity.

(4.4), geographical load balancing fits the formulation in (4.3).

4.3 Online network management via SDG

In this section, the dynamic problem (4.3) is reformulated to a tractable form, and classical

stochastic dual gradient (SDG) approach is revisited, along with a brief discussion of its online

performance.

4.3.1 Problem reformulation

Recall in Section 4.2.1 that the main challenge of solving (4.3) resides in time-coupling constraints

and unknown distribution of the underlying random processes. Regarding the first hurdle, combin-

ing (4.3b) with (4.3c), it can be shown that in the long term, workload arrival and departure rates

must satisfy the following necessary condition [116, Theorem 2.8]

lim
T→∞

1

T

T∑
t=1

E [Axt + ct] ≤ 0 (4.5)

given that the initial queue length is finite, i.e., ‖q1‖ ≤ ∞. In other words, on average all buffered

delay-tolerant workloads should be served. Using (4.5), a relaxed version of (4.3) is

Ψ̃∗ := min
{xt,∀t}

lim
T→∞

1

T

T∑
t=1

E [Ψt(xt)] s.t. (4.3d) and (4.5) (4.6)
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where Ψ̃∗ is the optimal objective for the relaxed problem (4.6).

Compared to (4.3), problem (4.6) eliminates the time coupling across variables {qt,∀t} by

replacing (4.3b) and (4.3c) with (4.5). Since (4.6) is a relaxed version of (4.3) with the optimal

objective Ψ̃∗ ≤ Ψ∗, if one solves (4.6) instead of (4.3), it will be prudent to derive an optimality

bound on Ψ∗, provided that the sequence of solutions {xt, ∀t} obtained by solving (4.6) is feasible

for the relaxed constraints (4.3b) and (4.3c). Regarding the relaxed problem (4.6), using arguments

similar to those in [116, Theorem 4.5], it can be shown that if the random state st is independent and

identically distributed (i.i.d.) over time t, there exists a stationary control policy χ∗(·), which is a

pure (possibly randomized) function of the realization of random state st (or the observed state st);

i.e., it satisfies (4.3d), as well as guarantees that E[Ψt(χ
∗(st))] = Ψ̃∗ and E[Aχ∗(st) + ct] ≤ 0.

As the optimal policyχ∗(·) is time invariant, it implies that the dynamic problem (4.6) is equivalent

to the following time-invariant ensemble program

Ψ̃∗ := min
χ(·)

E
[
Ψ
(
χ(st); st

)]
(4.7a)

s.t. E[Aχ(st) + c(st)] ≤ 0 (4.7b)

χ(st) ∈ X , ∀st ∈ S (4.7c)

where χ(st) := xt, c(st) = ct, and Ψ
(
χ(st); st

)
:= Ψt(xt); set S is the sample space of st,

and the constraint (4.7c) holds almost surely. Observe that the index t in (4.7) can be dropped,

since the expectation is taken over the distribution of random variable st, which is time-invariant.

Leveraging the equivalent form (4.7), the remaining task boils down to finding the optimal policy

that achieves the minimal objective in (4.7a) and obeys the constraints (4.7b) and (4.7c).2 Note that

the optimization in (4.7) is with respect to a stationary policy χ(·), which is an infinite dimensional

problem in the primal domain. However, there is a finite number of expected constraints [cf.

(4.7b)]. Thus, the dual problem contains a finite number of variables, hinting to the effect that

solving (4.7) is tractable in the dual domain [108, 130].

4.3.2 Lagrange dual and optimal policy

With λ ∈ RI+ denoting the Lagrange multipliers associated with (4.7b), the Lagrangian of (4.7) is

L(χ,λ) := E
[
Lt(xt,λ)

]
(4.8)

2Though there may exist other time-dependent policies that generate the optimal solution to (4.6), our focus is
restricted to the one that purely depends on the state s ∈ S, which can be time-independent [116, Theorem 4.5].
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with λ ≥ 0, and the instantaneous Lagrangian is

Lt(xt,λ) :=Ψt(xt) + λ>(Axt + ct) (4.9)

where constraint (4.7c) remains implicit. Notice that the instantaneous objective Ψt(xt) and the

instantaneous constraint Axt + ct are both parameterized by the observed state st := [φ>t , c
>
t ]>

at time t; i.e., Lt(xt,λ) = L(χ(st),λ; st).

Correspondingly, the Lagrange dual function is defined as the minimum of the Lagrangian

over the all feasible primal variables [14], given by

D(λ) : = min
{χ(st)∈X , ∀st∈S}

L(χ,λ)

= min
{χ(st)∈X , ∀st∈S}

E
[
L(χ(st),λ; st)

]
. (4.10a)

Note that the optimization in (4.10a) is still w.r.t. a function. To facilitate the optimization, we

re-write (4.10a) relying on the so-termed interchangeability principle [145, Theorem 7.80].

Lemma 13. Let ξ denote a random variable on Ξ, and H := {h( · ) : Ξ → Rn} denote the

function space of all the functions on Ξ. For any ξ ∈ Ξ, if f( · , ξ) : Rn → R is a proper and

lower semicontinuous convex function, then it follows that

min
h(·)∈H

E
[
f(h(ξ), ξ)

]
= E

[
min
h∈Rn

f(h, ξ)

]
. (4.10b)

Lemma 13 implies that under mild conditions, we can replace the optimization over a function

space with (infinitely many) point-wise optimization problems. In the context here, we assume that

Ψt(xt) is proper, lower semicontinuous, and strongly convex (cf. Assumption 2 in Section V). Thus,

for given finite λ and st, L( · ,λ; st) is also strongly convex, proper and lower semicontinuous.

Therefore, applying Lemma 13 yields

min
{χ(·):S→X}

E
[
L(χ(st),λ; st)

]
=E
[

min
χ(st)∈X

L(χ(st),λ; st)
]

(4.10c)

where the minimization and the expectation are interchanged. Accordingly, we re-write (4.10a) in

the following form

D(λ)=E

[
min

χ(st)∈X
L(χ(st),λ; st)

]
=E

[
min
xt∈X

Lt(xt,λ)

]
. (4.10d)
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Likewise, for the instantaneous dual function Dt(λ) = D(λ; st) := minxt∈X Lt(xt,λ), the dual

problem of (4.7) is

max
λ≥0

D(λ) := E [Dt(λ)] . (4.11)

In accordance with the ensemble primal problem (4.7), we will henceforth refer to (4.11) as the

ensemble dual problem.

If the optimal Lagrange multiplier λ∗ associated with (4.7b) were known, then optimizing (4.7)

and consequently (4.6) would be equivalent to minimizing the Lagrangian L(χ,λ∗) or infinitely

many instantaneous {Lt(xt,λ∗)}, over the set X [17]. We restate this assertion as follows.

Proposition 3. Consider the optimization problem in (4.7). Given a realization st, and the optimal

Lagrange multiplier λ∗ associated with the constraints (4.7b), the optimal instantaneous resource

allocation decision is

x∗t = χ∗(st) ∈ arg min
χ(st)∈X

L(xt,λ
∗; st) (4.12)

where ∈ accounts for possibly multiple minimizers of Lt.

When the realizations {st} are obtained sequentially, one can generate a sequence of optimal

solutions {x∗t } correspondingly for the dynamic problem (4.6). To obtain the optimal allocation in

(4.12) however, λ∗ must be known. This fact motivates our novel “learn-and-adapt” stochastic

dual gradient (LA-SDG) method in Section 4.4. To this end, we will first outline the celebrated

stochastic dual gradient iteration (a.k.a. Lyapunov optimization).

4.3.3 Revisiting stochastic dual (sub)gradient

To solve (4.11), a standard gradient iteration involves sequentially taking expectations over the

distribution of st to compute the gradient. Note that when the Lagrangian minimization (cf. (4.12))

admits possibly multiple minimizers, a subgradient iteration is employed instead of the gradient

one [14]. This is challenging because the distribution of st is typically unknown in practice. But

even if the joint probability distribution functions were available, finding the expectations is not

scalable as the dimensionality of st grows.

A common remedy to this challenge is stochastic approximation [131, 116], which corresponds

to the following SDG iteration

λt+1 =
[
λt + µ∇Dt(λt)

]+
, ∀t (4.13a)
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where µ is a positive (and typically pre-selected constant) stepsize. The stochastic (sub)gradient

∇Dt(λt) = Axt + ct is an unbiased estimate of the true (sub)gradient; that is, E[∇Dt(λt)] =

∇D(λt). Hence, the primal xt can be found by solving the following instantaneous sub-problems,

one per t

xt ∈ arg min
xt∈X

Lt(xt,λt). (4.13b)

The iterate λt+1 in (4.13a) depends only on the probability distribution of st through the

stochastic (sub)gradient ∇Dt(λt). Consequently, the process {λt} is Markov with invariant

transition probability when st is stationary. An interesting observation is that since ∇Dt(λt) :=

Axt + ct, the dual iteration can be written as [cf. (4.13a)]

λt+1/µ = [λt/µ+ Axt + ct]
+ , ∀t (4.14)

which coincides with (4.3b) forλt/µ = qt; see also [116, 70, 163] for a virtual queue interpretation

of this parallelism.

Thanks to its low complexity and robustness to non-stationary scenarios, SDG is widely

used in various areas, including adaptive signal processing [81], stochastic network optimization

[116, 70, 69], and energy management in power grids [163, 155]. For network management in

particular, this iteration entails a cost-delay tradeoff as summarized next; see e.g., [116].

Proposition 4. If Ψ∗ is the optimal cost in (4.3) under any feasible control policy with the state

distribution available, and if a constant stepsize µ is used in (4.13a), the SDG recursion (4.13)

achieves an O(µ)-optimal solution in the sense that

lim
T→∞

1

T

T∑
t=1

E [Ψt (xt(λt))] ≤ Ψ∗ +O(µ) (4.15a)

where xt(λt) denotes the decisions obtained from (4.13b), and it incurs a steady-state queue

length O(1/µ), namely

lim
T→∞

1

T

T∑
t=1

E [qt] = O
(

1

µ

)
. (4.15b)

Proposition 4 asserts that SDG with stepsize µ will asymptotically yield an O(µ)-optimal

solution [14, Prop. 8.2.11], and it will have steady-state queue length q∞ inversely proportional

to µ. This optimality gap is standard, because iteration (4.13a) with a constant stepsize3 will
3A vanishing stepsize in the stochastic approximation iterations can ensure convergence, but necessarily implies an

unbounded queue length as µ→ 0 [116].
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Algorithm 5 LA-SDG for Stochastic Network Optimization

1: Initialize: dual iterate λ1, empirical dual iterate λ̂1, queue length q1, control variable θ =√
µ log2(µ) · 1, and proper stepsizes µ and {ηt, ∀t}.

2: for t = 1, 2 . . . do
3: Resource allocation (1st gradient):
4: Construct the effective dual variable via (4.17b), observe the current state st, and obtain

resource allocation xt(γt) by minimizing online Lagrangian (4.17a).
5: Update the instantaneous queue length qt+1 via

qt+1 =
[
qt +

(
Axt(γt) + ct

)]+
, ∀t. (4.16)

6: Sample recourse (2nd gradient):
7: Obtain variable xt(λ̂t) by solving online Lagrangian minimization with sample st via

(4.18b).
8: Update the empirical dual variable λ̂t+1 via (4.18a).
9: end for

converge to a neighborhood of the optimum λ∗ [81]. Under mild conditions, the optimal multiplier

is bounded, i.e., λ∗ = O(1), so that the steady-state queue length q∞ naturally scales withO(1/µ)

since it hovers around λ∗/µ; see (4.14). As a consequence, to achieve near optimality (sufficiently

small µ), SDG incurs large average queue lengths, and thus undesired average delay as per Little’s

law [116]. To overcome this limitation, we develop next an online approach, which can improve

SDG’s cost-delay tradeoff, while still preserving its affordable complexity and adaptability.

4.4 LA-SDG: Learn-and-adapt SDG

Our main approach is derived in this section, by nicely leveraging both learning and optimization

tools. Its decentralized implementation is also developed.

4.4.1 LA-SDG as a foresighted learning scheme

The intuition behind our learn-and-adapt stochastic dual gradient (LA-SDG) approach is to

incrementally learn network state statistics from observed data while adapting resource allocation

driven by the learning process. A key element of LA-SDG could be termed as “foresighted”

learning because instead of myopically learning the exact optimal argument from empirical data,

LA-SDG maintains the capability to hedge against the risk of “future non-stationarities.”

The proposed LA-SDG is summarized in Algorithm 5. It involves the queue length qt and an

empirical dual variable λ̂t, along with a bias-control variable θ to ensure that LA-SDG will attain
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near optimality in the steady state [cf. Theorems 7 and 8]. At each time slot t, LA-SDG obtains

two stochastic gradients using the current st: One for online resource allocation, and another one

for sample learning/recourse. For the first gradient (lines 3-5), contrary to SDG that relies on the

stochastic multiplier estimate λt [cf. (4.13b)], LA-SDG minimizes the instantaneous Lagrangian

xt(γt) ∈ arg min
xt∈X

Lt(xt,γt) (4.17a)

which depends on what we term effective multiplier, given by

γt︸ ︷︷ ︸
effective multiplier

= λ̂t︸ ︷︷ ︸
statistical learning

+ µqt − θ︸ ︷︷ ︸
online adaptation

, ∀t. (4.17b)

Variable γt also captures the effective price, which is a linear combination of the empirical λ̂t and

the queue length qt, where the control variable µ tunes the weights of these two factors, and θ

controls the bias of γt in the steady state [69]. As a single pass of SDG “wastes” valuable online

samples, LA-SDG resolves this limitation in a learning step by evaluating a second gradient (lines

6-8); that is, LA-SDG simply finds the stochastic gradient of (4.11) at the previous empirical dual

variable λ̂t, and implements a gradient ascent update as

λ̂t+1 =
[
λ̂t + ηt

(
Axt(λ̂t) + ct

)]+
, ∀t (4.18a)

where ηt is a proper diminishing stepsize, and the “virtual” allocation xt(λ̂t) can be found by

solving

xt(λ̂t) ∈ arg min
xt∈X

Lt(xt, λ̂t). (4.18b)

Note that different from xt(γt) in (4.17a), the “virtual” allocation xt(λ̂t) will not be physically

implemented. The multiplicative constant µ in (4.17b) controls the degree of adaptability, and

allows for adaptation even in the steady state (t→∞), but the vanishing ηt is for learning, as we

shall discuss next.

The key idea of LA-SDG is to empower adaptive resource allocation (via γt) with the learning

process (effected through λ̂t). As a result, the construction of γt relies on λ̂t, but not vice versa.

For a better illustration of the effective price (4.17b), we call λ̂t the statistically learnt price to

obtain the exact optimal argument of the expected problem (4.11). We also call µqt (which is

exactly λt as shown in (4.13a)) the online adaptation term since it can track the instantaneous

change of system statistics. Intuitively, a large µ will allow the effective policy to quickly respond
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to instantaneous variations so that the policy gains improved control of queue lengths, while a

small µ puts more weight on learning from historical samples so that the allocation strategy will

incur less variance in the steady state. In this sense, LA-SDG can attains both statistical efficiency

and adaptability.

Distinctly different from SDG that combines statistical learning with resource allocation into

a single adaptation step [cf. (4.13a)], LA-SDG performs these two tasks into two intertwined

steps: resource allocation (4.17), and statistical learning (4.18). The additional learning step

adopts diminishing stepsize to find the “best empirical” dual variable from all observed network

states. This pair of complementary gradient steps endows LA-SDG with its attractive properties.

In its transient stage, the extra gradient evaluations and empirical dual variables accelerate the

convergence speed of SDG; while in the steady stage, the empirical multiplier approaches the

optimal one, which significantly reduces the steady-state queue lengths.

Remark 1. Readers familiar with algorithms on statistical learning and stochastic network opti-

mization can recognize their similarities and differences with LA-SDG.

(P1) SDG in [116] involves only the first part of LA-SDG (1st gradient), where the allocation

policy purely relies on stochastic estimates of multipliers or instantaneous queue lengths, i.e.,

γt = µqt. In contrast, LA-SDG further leverages statistical learning from streaming data.

(P2) Several schemes have been developed recently for statistical learning at scale to find

λ̂t, namely, SAG in [132] and SAGA in [45]. However, directly applying γt = λ̂t to allocate

resources causes infeasibility. For a finite time t, λ̂t is δ-optimal4 for (4.11), and the primal

variable xt(λ̂t) in turn is δ-feasible with respect to (4.7b) that is necessary for (4.3c). Since qt

essentially accumulates online constraint violations of (4.7b), it will grow linearly with t and

eventually become unbounded.

4.4.2 LA-SDG as a modified heavy-ball iteration

The heavy-ball iteration belongs to the family of momentum-based first-order methods, and

has well-documented acceleration merits in the deterministic setting [128]. Motivated by its

convergence speed in solving deterministic problems, stochastic heavy-ball methods have been

also pursued recently [175, 97].

The stochastic version of the heavy-ball iteration is [175]

λt+1 = λt + µ∇Dt(λt) + β(λt − λt−1), ∀t (4.19)

4Iterate λ̂t is δ-optimal if ‖λ̂t − λ∗‖ ≤ O(δ), and likewise for δ-feasibility.
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where µ > 0 is an appropriate constant stepsize, β ∈ [0, 1) denotes the momentum factor, and the

stochastic gradient ∇Dt(λt) can be found by solving (4.13b) using heavy-ball iterate λt. This

iteration exhibits attractive convergence rate during the initial stage, but its performance degrades

in the steady state. Recently, the performance of momentum iterations (heavy-ball or Nesterov)

with constant stepsize µ and momentum factor β, has been proved equivalent to SDG with constant

µ/(1 − β) per iteration [175]. Since SDG with a large stepsize converges fast at the price of

considerable loss in optimality, the momentum methods naturally inherit these attributes.

To see the influence of the momentum term, consider expanding the iteration (4.19) as

λt+1 = λt + µ∇Dt(λt) + β(λt − λt−1)

= λt + µ∇Dt(λt)+β [µ∇Dt−1(λt−1)+β(λt−1−λt−2)]

= λt + µ
∑t

τ=1 β
t−τ∇Dτ (λτ )︸ ︷︷ ︸

accumulated gradient

+βt(λ1−λ0)︸ ︷︷ ︸
initial state

. (4.20)

The stochastic heavy-ball method will accelerate convergence in the initial stage thanks to the

accumulated gradients, and it will gradually forget the initial state. As t increases however, the

algorithm also incurs a worst-case oscillation O(µ/(1 − β)), which degrades performance in

terms of objective values when compared to SDG with stepsize µ. This is in agreement with the

theoretical analysis in [175, Theorem 11].

Different from standard momentum methods, LA-SDG nicely inherits the fast convergence

in the initial stage, while reducing the oscillation of stochastic momentum methods in the steady

state. To see this, consider two consecutive iterations (4.17b)

γt+1 = λ̂t+1 + µqt+1 − θ (4.21a)

γt = λ̂t + µqt − θ (4.21b)

and subtract them, to arrive at

γt+1 = γt + µ (qt+1 − qt) + (λ̂t+1 − λ̂t)
= γt + µ∇Dt(γt) + (λ̂t+1 − λ̂t), ∀t. (4.22)

Here the equalities in (4.22) follows from ∇Dt(γt) = Axt(γt) + ct in qt recursion (4.16), and

with a sufficiently large θ, the projection in (4.16) rarely (with sufficiently low probability) takes

effect since the steady-state qt will hover around θ/µ; see the details of Theorem 7 and the proof
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thereof.

Comparing the LA-SDG iteration (4.22) with the stochastic heavy-ball iteration (4.19), both of

them correct the iterates using the stochastic gradient∇Dt(γt) or∇Dt(λt). However, LA-SDG

incorporates the variation of a learning sequence (also known as a reference sequence) {λ̂t} into the

recursion of the main iterate γt, other than heavy-ball’s momentum term β(λt − λt−1). Since the

variation of learning iterate λ̂t eventually diminishes as t increases, keeping the learning sequence

enables LA-SDG to enjoy accelerated convergence in the initial (transient) stage compared to

SDG, while avoiding large oscillation in the steady state compared to the stochastic heavy-ball

method. We formally remark this obervation next.

Remark 2. LA-SDG offers a fresh approach to designing stochastic optimization algorithms in

a dynamic environment. While directly applying the momentum-based iteration to a stochastic

setting may lead to unsatisfactory steady-state performance, it is promising to carefully design a

reference sequence that exactly converges to the optimal argument. Therefore, algorithms with

improved convergence (e.g., the second-order method in [178]) can also be incorporated as a

reference sequence to further enhance the performance of LA-SDG.

4.4.3 Complexity and distributed implementation of LA-SDG

This section introduces a fully distributed implementation of LA-SDG by exploiting the problem

structure of network resource allocation. For notational brevity, collect the variables representing

outgoing links from node i in xit := {xijt ,∀j ∈ Ni} with Ni denoting the index set of outgoing

neighbors of node i. Let also sit := [φit; c
i
t] denote the random state at node i. It will be shown

that the learning and allocation decision per time slot t is processed locally per node i based on its

local state sit.

To this end, rewrite the Lagrangian minimization for a general dual variable λ ∈ RI+ at time t

as [cf. (4.17a) and (4.18b)]

min
xt∈X

∑
i∈I

Ψi(xit;φ
i
t) +

∑
i∈I

λi(A(i,:)xt + cit) (4.23)

where λi is the i-th entry of vector λ, and A(i,:) denotes the i-th row of the node-incidence matrix

A. Clearly, A(i,:) selects entries of xt associated with the in- and out-links of node i. Therefore,

the subproblem at node i is

min
xit∈X i

Ψi(xit;φ
i
t) +

∑
j∈Ni

(λj − λi)xjit (4.24)
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where X i is the feasible set of primal variable xit. In the case of (4.3d), the feasible set X can

be written as a Cartesian product of sets {X i, ∀i}, so that the projection of xt to X is equivalent

to separate projections of xit onto X i. Note that {λj , ∀j ∈ Ni} will be available at node i by

exchanging information with the neighbors per time t. Hence, given the effective multipliers γjt
(j-th entry of γt) from its outgoing neighbors in j ∈ Ni, node i is able to form an allocation

decision xit(γt) by solving the convex programs (4.24) with λj = γjt ; see also (4.17a). Needless

to mention, qit can be locally updated via (4.16), that is

qit+1 =

qit +
( ∑
j:i∈Nj

xjit (γt)−
∑
j∈Ni

xijt (γt) + cit

)+

(4.25)

where {xjit (γt)} are the local measurements of arrival (departure) workloads from (to) its neigh-

bors.

Likewise, the tentative primal variable xit(λ̂t) can be obtained at each node locally by solving

(4.24) using the current sample sit again with λi = λ̂it. By sending xit(λ̂t) to its outgoing neighbors,

node i can update the empirical multiplier λ̂it+1 via

λ̂it+1 =

λ̂it+ηt( ∑
j:i∈Nj

xjit (λ̂t)−
∑
j∈Ni

xijt (λ̂t)+cit

)+

(4.26)

which, together with the local queue length qit+1, also implies that the next γit+1 can be obtained

locally.

Compared with the classic SDG recursion (4.13a)-(4.13b), the distributed implementation of

LA-SDG incurs only a factor of two increase in computational complexity. Next, we will further

analytically establish that it can improve the delay of SDG by an order of magnitude with the same

order of optimality gap.

4.5 Optimality and stability of LA-SDG

This section presents performance analysis of LA-SDG, which will rely on the following four

assumptions.

Assumption 1. The state st is bounded and i.i.d. over time t.

Assumption 2. Ψt(xt) is proper, σ-strongly convex, lower semi-continuous, and has Lp-Lipschitz

continuous gradient. Also, Ψt(xt) is non-decreasing w.r.t. all entries of xt over X .
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Assumption 3. There exists a stationary policy χ(·) satisfying χ(st) ∈ X for all st, and

E[Aχ(st) + ct] ≤ −ζ, where ζ > 0 is a slack vector constant.

Assumption 4. For any time t, the magnitude of the constraint is bounded, that is, ‖Axt + ct‖ ≤
M, ∀xt ∈ X .

Assumption 1 is typical in stochastic network resource allocation [70, 69, 51], and can be

relaxed to an ergodic and stationary setting following [130, 49]. Assumption 2 requires the primal

objective to be well behaved, meaning that it is bounded from below and has a unique optimal

solution. Note that non-decreasing costs with increased resources are easily guaranteed with

e.g., exponential and quadratic functions in our simulations. In addition, Assumption 2 ensures

that the dual function has favorable properties, which are important for the ensuring stability

analysis. Assumption 3 is Slater’s condition, which guarantees the existence of a bounded optimal

Lagrange multiplier [14], and is also necessary for queue stability [116]. Assumption 4 guarantees

boundedness of the gradient of the instantaneous dual function, which is common in performance

analysis of stochastic gradient-type algorithms [118].

Building upon the desirable properties of the primal problem, we next show that the corre-

sponding dual function satisfies both smoothness and quadratic growth properties [66, 77], which

will be critical to the subsequent analysis.

Lemma 14. Under Assumption 2, the dual function D(λ) in (4.11) is Ld-smooth, where Ld =

ρ(A>A)/σ, and ρ(A>A) denotes the spectral radius of A>A. In addition, if λ lies in a compact

set, there always exists a constant ε such that D(λ) satisfies the following quadratic growth

property

D(λ∗)−D(λ) ≥ ε

2
‖λ∗ − λ‖2 (4.27)

where λ∗ is the optimal multiplier for the dual problem (4.11).

Proof: See Appendix A in the online version [32].

We start with the convergence of the empirical dual variables λ̂t. Note that the update of λ̂t is

a standard learning iteration from historical data, and it is not affected by future resource allocation

decisions. Therefore, the theoretical result on SDG with diminishing stepsize is directly applicable

[118, Sec. 2.2].

Lemma 15. Let λ̂t denote the empirical dual variable in Algorithm 5, and λ∗ the optimal

argument for the dual problem (4.11). If the stepsize is chosen as ηt = αD
M
√
t
, ∀t, with a constant
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α > 0, a sufficient large constant D > 0, and M as in Assumption 4, then it holds that

E
[
D(λ∗)−D(λ̂t)

]
≤ max{α, α−1} DM√

t
(4.28)

where the expectation is over all the random states st up to t.

Lemma 15 asserts that using a diminishing stepsize, the dual function value converges sub-

linearly to the optimal value in expectation. In principle, D is the radius of the feasible set for the

dual variable λ [118, Sec. 2.2]. However, as the optimal multiplier λ∗ is bounded according to

Assumption 3, one can always estimate a large enough D, and the estimation error will only affect

the constant of the sub-optimality bound (4.28) through the scalar α. The sub-optimality bound in

Lemma 15 holds in expectation, which averages over all possible sample paths {s1, . . . , st}.
As a complement to Lemma 15, the almost sure convergence of the empirical dual variables is

established next to characterize the performance of each individual sample path.

Theorem 6. For the sequence of empirical multipliers {λ̂t} in Algorithm 5, if the stepsizes are

chosen as ηt = αD
M
√
t
, ∀t, with constants α,M,D defined in Lemma 15, it holds that

lim
t→∞

λ̂t = λ∗, w.p.1 (4.29)

where λ∗ is the optimal dual variable for the expected dual function minimization (4.11).

Proof: The proof follows the steps in [14, Proposition 8.2.13], which is omitted here.

Building upon the asymptotic convergence of empirical dual variables for statistical learning,

it becomes possible to analyze the online performance of LA-SDG. Clearly, the online resource

allocation xt is a function of the effective dual variable γt and the instantaneous network state st

[cf. (4.17a)]. Therefore, the next step is to show that the effective dual variable γt also converges

to the optimal argument of the expected problem (4.11), which would establish that the online

resource allocation xt is asymptotically optimal. However, directly analyzing the trajectory of γt
is nontrivial, because the queue length {qt} is coupled with the reference sequence {λ̂t} in γt. To

address this issue, rewrite the recursion of γt as

γt+1 = γt + (λ̂t+1 − λ̂t) + µ(qt+1 − qt), ∀t (4.30)

where the update of γt depends on the variations of λ̂t and qt. We will first study the asymptotic

behavior of queue lengths qt, and then derive the analysis of γt using the convergence of λ̂t in

(4.29), and the recursion (4.30).
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Define the time-varying target θ̃t = λ∗ − λ̂t + θ, which is the optimality residual of statis-

tical learning λ∗ − λ̂t plus the bias-control variable θ. Per Theorem 6, it readily follows that

limt→∞ θ̃t = θ, w.p.1. By showing that qt is attracted towards the time-varying target θ̃t/µ, we

will further derive the stability of queue lengths.

Lemma 16. With qt and µ denoting queue length and stepsize, there exists a constant B =

Θ(1/
√
µ), and a finite time TB < ∞, such that for all t ≥ TB , if ‖qt − θ̃t/µ‖ > B, it holds in

LA-SDG that

E
[∥∥∥qt+1 − θ̃t/µ

∥∥∥ ∣∣∣qt] ≤ ∥∥∥qt − θ̃t/µ∥∥∥−√µ, w.p.1. (4.31)

Proof: See Appendix B in the online version [32].

Lemma 16 reveals that when qt is large and deviates from the time-varying target θ̃t/µ, it will

be bounced back towards the target in the next time slot. Upon establishing this drift behavior of

queues, we are on track to establish queue stability.

Theorem 7. With qt,θ, and µ defined in (4.17b), there exists a constant B̃ =Θ(1/
√
µ) such that

the queue length under LA-SDG converges to a neighborhood of θ/µ as

lim inf
t→∞

‖qt − θ/µ‖ ≤ B̃, w.p.1. (4.32a)

In addition, if we choose θ = O(
√
µ log2(µ)), the long-term average expected queue length

satisfies

lim
T→∞

1

T

T∑
t=1

E [qt] = O
(

log2(µ)√
µ

)
, w.p.1. (4.32b)

Proof: See Appendix C in the online version [32].

Theorem 7 in (4.32a) asserts that the sequence of queue iterates converges (in the infimum

sense) to a neighborhood of θ/µ, where the radius of neighborhood region scales as 1/
√
µ. In

addition to the sample path result, (4.32b) demonstrates that with a specific choice of θ, the queue

length averaged over all sample paths will be O
(
log2(µ)/

√
µ
)
. Together with Theorem 6, it

suffices to have the effective dual variable converge to a neighborhood of the optimal multiplier

λ∗; that is, lim inft→∞ γt = λ∗ + µqt − θ = λ∗ +O(
√
µ), w.p.1. Notice that the SDG iterate

λt in (4.13a) will also converge to a neighborhood of λ∗. Therefore, intuitively LA-SDG will

behave similar to SDG in the steady state, and its asymptotic performance follows from that of

SDG. However, the difference is that through a careful choice of θ, for a sufficiently small µ,

LA-SDG can improve the queue length O (1/µ) under SDG by an order of magnitude.
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In addition to feasibility, we formally establish in the next theorem that LA-SDG is asymptoti-

cally near-optimal.

Theorem 8. Let Ψ∗ be the optimal objective value of (4.3) under any feasible policy with

distribution information about the state fully available. If the control variable is chosen as

θ = O(
√
µ log2(µ)), then with a sufficiently small µ, LA-SDG yields a near-optimal solution for

(4.3) in the sense that

lim
T→∞

1

T

T∑
t=1

E [Ψt (xt(γt))] ≤ Ψ∗ +O(µ), w.p.1 (4.33)

where xt(γt) denotes the online operations obtained from the Lagrangian minimization (4.17a).

Proof: See Appendix D in the online version [32].

Combining Theorems 7 and 8, we are ready to state that by setting θ = O(
√
µ log2(µ)),

LA-SDG is asymptotically O(µ)-optimal with an average queue length O(log2(µ)/
√
µ). This

result implies that LA-SDG is able to achieve a near-optimal cost-delay tradeoff [µ, log2(µ)/
√
µ];

see [108, 116]. Comparing with the standard tradeoff [µ, 1/µ] under SDG, the learn-and-adapt

design of LA-SDG markedly improves the online performance in terms of delay. Note that a better

tradeoff [µ, log2(µ)] has been derived in [69] under the so-termed local polyhedral assumption.

Observe though, that the considered setting in [69] is different from the one here. While the

network state set S and the action set X in [69] are discrete and countable, LA-SDG allows

continuous S and X with possibly infinite elements, and still be amenable to efficient and scalable

online operations.

4.6 Numerical tests

This section presents numerical tests to confirm the analytical claims and demonstrate the merits

of the proposed approach. We consider the geographical load balancing network of Section 4.2.2

with K = 10 data centers, and J = 10 mapping nodes. Performance is tested in terms of the

time-averaged instantaneous network cost in (4.4), namely

Ψt(xt) :=
∑
k∈K

pkt

(
(xk0
t )2 − ekt

)
+
∑
j∈J

∑
k∈K

bjkt (xjkt )2 (4.34)

where the energy price pkt is uniformly distributed over [10, 30]; samples of the renewable supply

{ekt } are generated uniformly over [10, 100]; and the per-unit bandwidth cost is set to bjkt =
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Figure 4.2: Comparison of time-averaged network costs.
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Figure 4.3: Instantaneous queue lengths summed over all nodes.

40/x̄jk,∀k, j, with bandwidth limits {x̄jk} generated from a uniform distribution within [100, 200].

The capacities at data centers {x̄k0
t } are uniformly generated from [100, 200]. The delay-tolerant

workloads {cjt} arrive at each mapping node j according to a uniform distribution over [10, 100].

Clearly, the cost (4.34) and the state st here satisfy Assumptions 1 and 2. Finally, the stepsize

is ηt = 1/
√
t,∀t, the trade-off variable is µ = 0.2, and the bias correction vector is chosen

as θ = 100
√
µ log2(µ)1 by default, but manually tuned in Figs. 4.5-4.6. We introduce two

benchmarks: SDG in (4.13a) (see e.g., [116]), and the projected stochastic heavy-ball in (4.19) and

β = 0.5 by default (see e.g., [97]). Unless otherwise stated, all simulated results were averaged

over 50 Monte Carlo realizations.

Performance is first compared in terms of the time-averaged cost, and the instantaneous queue
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Figure 4.4: The evolution of stochastic multipliers at mapping node 1 (µ = 0.2).
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Figure 4.5: Comparison of steady-state network costs (after 106 slots).

length in Figs. 4.2 and 4.3. For the network cost, SDG, LA-SDG, and the heavy-ball iteration with

β = 0.5 converge to almost the same value, while the heavy-ball method with a larger momentum

factor β = 0.99 exhibits a pronounced optimality loss. LA-SDG and heavy-ball exhibit faster

convergence than SDG as their running-average costs quickly arrive at the optimal operating phase

by leveraging the learning process or the momentum acceleration. In this test, LA-SDG exhibits a

much lower delay as its aggregated queue length is only 10% of that for the heavy-ball method

with β = 0.5 and 4% of that for SDG. By using a larger β, the heavy-ball method incurs a much

lower queue length relative to that of SDG, but still slightly higher than that of LA-SDG. Clearly,

our learn-and-adapt procedure improves the delay performance.

Recall that the instantaneous resource allocation can be viewed as a function of the dual
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Figure 4.6: Steady-state queue lengths summed over all nodes (after 106 slots).

variable; see Proposition 3. Hence, the performance differences in Figs. 4.2-4.3 can be also

anticipated by the different behavior of dual variables. In Fig. 4.4, the evolution of stochastic dual

variables is plotted for a single Monte Carlo realization; that is the dual iterate in (4.13a) for SDG,

the momentum iteration in (4.19) for the heavy-ball method, and the effective multiplier in (4.17b)

for LA-SDG. As illustrated in (4.20), the performance of momentum iterations is similar to SDG

with larger stepsize µ/(1− β). This is corroborated by Fig. 4.4, where the stochastic momentum

iterate with β = 0.5 behaves similar to the dual iterates of SDG and LA-SDG, but its oscillation

becomes prohibitively high with a larger factor β = 0.99, which nicely explains the higher cost in

Fig. 4.2.

Since the cost-delay performance is sensitive to the choice of parameters µ and β, extensive

experiments are further conducted among three algorithms using different values of µ and β in Figs.

4.5 and 4.6. The steady-state performance is evaluated by running algorithms for sufficiently long

time, up to 106 slots. The steady-state costs of all three algorithms increase as µ becomes larger,

and the costs of LA-SDG and the heavy-ball with small momentum factor β = 0.4 are close to that

of SDG, while the costs of the heavy-ball with larger momentum factors β = 0.8 and β = 0.99 are

much larger than that of SDG. Considering steady-state queue lengths (network delay), LA-SDG

exhibits an order of magnitude lower amount than those of SDG and the heavy-ball with small

β, under all choices of µ. Note that the heavy-ball with a sufficiently large factor β = 0.99 also

has a very low queue length, but it incurs a higher cost than LA-SDG in Fig. 4.5 due to higher

steady-state oscillation in Fig. 4.4.
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4.7 Proofs of lemmas and theorems

Let us first state a simple but useful property regarding the primal-dual problems (4.7) and (4.11).

Proposition 5. Under Assumptions 1-3, for the constrained optimization (4.7) with the optimal

policy χ∗(·) and its optimal Lagrange multiplier λ∗, it holds that E[Ax∗t + ct] = 0 with x∗t =

χ∗(st) ∈ X , and accordingly that∇D(λ∗) = 0.

Proof: With λ∗ denoting the optimal Lagrange multiplier with (4.7b), the Karush-Kuhn-Tucker

(KKT) conditions [14] are(
E[∇Ψt(x

∗
t )] + A>λ∗

)>
(E[xt − x∗t ]) ≥ 0, ∀xt ∈ X (4.35a)

(λ∗)>E[Ax∗t + ct] = 0 (4.35b)

E[Ax∗t + ct] ≤ 0; λ∗ ≥ 0 (4.35c)

where (4.35a) is the optimality condition of Lagrangian minimization, (4.35b) is the complemen-

tary slackness condition, and (4.35c) are the primal and dual feasibility conditions.

To establish the claim, let us first assume that there exists entry k that the inequality constraint

(4.7b) is not active; i.e., E[A(k,:)x
∗
t +ckt ] = −ζ with the constant ζ > 0, and A(k,:) denoting the

k-th row of A. As each row of A has at least one entry equal to −1, we collect all indices of

entries at k-th row with value −1 in set E−1
k so that A(k,e) = −1,∀e ∈ E−1

k .

Since x∗t is feasible, we have x∗t ≥ 0, and thus

E[A(k,:)x
∗
t + ckt ] = E

[∑
e∈E

A(k,e)(x
e
t )
∗ + ckt

]
= −ζ (4.36)

which implies that

E
[∑

e∈E−1
k

(xet )
∗]=ζ + E[ckt +

∑
e∈E\E−1

k
A(k,e)(x

e
t )
∗] > 0. (4.37)

According (4.35b), it further follows that (λk)∗ = 0 since (λk)∗ ·E[A(k,:)x
∗
t+c

k
t ] = −(λk)∗ ·ζ = 0.

Now we are on track to show that it contradicts with (4.35a). Since E[
∑

e∈E−1
k

(xet )
∗] > 0,

there exists at least an index j such that E[(xjt )
∗] > 0, j ∈ E−1

k . Choose E[xt] with E[xj̃t ] =

E[(xj̃t )
∗],∀j̃ 6= j and E[xjt ] = 0, to have E[xt−x∗t ] = [0, . . . ,−E[(xjt )

∗], . . . , 0]>. Recall that the

feasible set X in (4.3d) contains only box constraints; i.e., X := {x |0 ≤ x ≤ x̄}, which implies

that the above selection of xt is feasible. Hence, we arrive at (with ∇jΨt(x
∗
t ) denoting j-th entry
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of gradient) (
E[∇Ψt(x

∗
t )] + A>λ∗

)>
E[(xt − x∗t )]

=− E
[
∇jΨt(x

∗
t )(x

j
t )
∗ −

∑
i∈I

(λi)∗A(i,j)(x
j
t )
∗
]

(a)
= −E[∇jΨt(x

∗
t )(x

j
t )
∗]︸ ︷︷ ︸

<0

−
∑
i∈I\k

(λi)∗A(i,j)E[(xjt )
∗]︸ ︷︷ ︸

≥0

< 0 (4.38)

where (a) uses (λk)∗ = 0; the first bracket follows from Assumption 2 since ∇jΨt(x
∗
t ) is

monotonically increasing and∇jΨt(x
∗
t ) ≥ 0, thus for E[(xjt )

∗] > 0 it follows E[∇jΨt(x
∗
t )] > 0;

and the second bracket follows that λ∗ ≥ 0 and each column of A has at most one −1 and

A(k,j) = −1. The proof is then complete since (4.38) contradicts (4.35a).

4.7.1 Proof of Lemma 14

Proof of Lipschitz continuity: Under Assumption 2, the primal objective Ψt(xt) is σ-strongly

convex, and the smooth constant of the dual functionDt(λ), or equivalently, the Lipschitz constant

of gradient∇Dt(λ) directly follows from [12, Lemma II.2], which equals to Ld = ρ(A>A)/σ,

with ρ(A>A) denoting the maximum eigenvalue of A>A. We omit the derivations of this result,

and refer readers to that in [12].

Supporting lemmas for quadratic growth: To prove the quadratic growth property (4.27),

we introduce an error bound, which describes the local property of the dual function D(λ).

Lemma 17. [66, Lemma 2.3] Consider the dual function in (4.10) and the feasible set X in (4.3d)

with only linear constraints. For any λ satisfying D(λ) > −∞ and ‖∇D(λ)‖ ≤ δ, we have

‖λ∗ − λ‖ ≤ ξ‖∇D(λ)‖ (4.39)

where the scalar ξ depends on the matrix A as well the constants σ, Lp and Ld introduced in

Assumption 2.

Lemma 17 states a local error bound for the dual function D(λ). The error bound is “local”

since it holds only for λ close enough to the optimum λ∗, i.e., ‖∇D(λ)‖ ≤ δ. Following the

arguments in [66] however, if the dual iterate λ is artificially confined to a compact set Λ such

that ‖λ‖ ≤ D with D denoting the radius of Λ,5 then for the case ‖∇D(λ)‖ ≥ δ, the ratio
5Since the optimal multiplier is bounded per Assumption 3, one can safely find a large set Λ with radius D to

project dual iterates during optimization.
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‖λ∗ − λ‖/‖∇D(λ)‖ ≤ D/δ, which implies the existence of ξ satisfying (4.39) for any λ ∈ Λ.

Lemma 17 is important for establishing linear convergence rate without strong convexity [66].

Remarkably, we will show next that this error bound is also critical to characterize the steady-state

behavior of our LA-SDG scheme.

Building upon Lemma 17, we next show that the ensemble dual function D(λ) also satisfies

the so-termed Polyak-Lojasiewicz (PL) condition [77].

Lemma 18. Under Assumption 2, the local error-bound in (4.39) implies the following PL

condition, namely

D(λ∗)−D(λ) ≤ Ldξ
2

2
‖∇D(λ)‖2 (4.40)

where Ld is the Lipschitz constant of the dual gradient and ξ is as in (4.39).

Proof: Using the Ld-smoothness of the dual function D(λ), we have for any λ and ϕ ∈ RI+ that

D(ϕ) ≤ D(λ)− 〈∇D(ϕ),λ−ϕ〉+
Ld

2
‖λ−ϕ‖2. (4.41)

Choosing ϕ = λ∗, and using Proposition 5 such that∇D(λ∗) = 0, we have

D(λ∗)≤D(λ) +
Ld

2
‖λ− λ∗‖2

(a)

≤ D(λ)+
Ldξ

2

2
‖∇D(λ)‖2 (4.42)

where inequality (a) uses the local error-bound in (4.39).

Proof of quadratic growth: The proof follows the main steps of that in [77]. Building upon

Lemma 18, we next prove Lemma 14. Define a function of the dual variable λ as g(λ) :=√
D(λ∗)−D(λ). With the PL condition in (4.40), and Λ∗ denoting the set of optimal multipliers

for (4.11), we have for any λ /∈ Λ∗ that

‖∇g(λ)‖2 =
‖∇D(λ)‖2
D(λ∗)−D(λ)

≥ 2

Ldξ2
(4.43)

which implies that ‖∇g(λ)‖ ≥
√

2/(Ldξ2).

For any λ0 /∈Λ∗, consider the following differential equation6


dλ(τ)

dτ
= −∇g(λ(t)) (4.44a)

λ(τ = 0) = λ0 (4.44b)

6The time index in the proof of Lemma 1 is not related to the online optimization process, but it is useful to find the
structure of the dual function.
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which describes the continuous trajectory of {λ(τ)} starting from λ0 along the direction of

−∇g(λ(τ)). By using ‖∇g(λ)‖ ≥
√

2/(Ldξ2), it follows that ∇g(λ) is bounded below; thus,

the differential equation (4.44) guarantees that we sufficiently reduce the value of function g(λ),

and λ(τ) will eventually reach Λ∗.

In other words, there exists a time T such that λ(T ) ∈ Λ∗. Formally, for τ > T , we have

g(λ0)− g(λτ ) =

∫ λ0

λτ

〈∇g(λ),dλ〉

= −
∫ λτ

λ0

〈∇g(λ),dλ〉 = −
∫ T

0

〈
∇g(λ),

dλ(τ)

dτ

〉
dτ

=

∫ T

0
‖∇g(λ(τ))‖2dτ ≥

∫ T

0

2

Ldξ2
dτ =

2T

Ldξ2
. (4.45)

Since g(λ) ≥ 0, ∀λ, we have T ≤ g(λ0)Ldξ
2/2, which implies that there exists a finite time T

such that λτ ∈ Λ∗. On the other hand, the path length of trajectory {λ(τ)} will be longer than the

projection distance between λ0 and the closest point in Λ∗ denoted as λ∗, that is,∫ T

0

∥∥∥∥dλ(τ)

dτ

∥∥∥∥dτ =

∫ T

0
‖∇g(λ(τ))‖dτ ≥ ‖λ0 − λ∗‖ (4.46)

and thus we have from (4.45) that

g(λ0)− g(λτ ) =

∫ T

0
‖∇g(λ(τ))‖2dτ (4.47)

≥
∫ T

0
‖∇g(λ(τ))‖

√
2

Ldξ2
dτ

(b)

≥
√

2

Ldξ2
‖λ0 − λ∗‖

where (b) follows from (4.46). Choosing T such that g(λT ) = 0, we have

g(λ0) ≥
√

2

Ldξ2
‖λ0 − λ∗‖. (4.48)

Squaring both sides of (4.48), the proof is complete, since ε is defined as ε := 2/(Ldξ
2) and λ0

can be any point outside the set of optimal multipliers.

4.7.2 Proof of Lemma 16

Since λ̂t converges to λ∗, w.p.1 according to Theorem 6, there exists a finite time Tθ such that

for t > Tθ, we have ‖λ∗ − λ̂t‖ ≤ ‖θ‖. In such case, it follows that θ̃t = λ∗ − λ̂t + θ ≥ 0, since
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θ ≥ 0. Therefore, we have

‖qt+1−θ̃t/µ‖2 = ‖[qt + Axt + ct]
+ − [θ̃t/µ]+‖2 (4.49)

(a)

≤‖qt + Axt + ct − θ̃t/µ‖2
(b)

≤‖qt − θ̃t/µ‖2 + 2(qt − θ̃t/µ)>(Axt + ct) +M2

where (a) comes from the non-expansive property of the projection operator, and (b) is due to the

upper bound M in Assumption 4.

The RHS of (4.49) can be upper bounded by

‖qt − θ̃t/µ‖2 + 2(qt − θ̃t/µ)>(Axt + ct) +M2

(c)
=‖qt − θ̃t/µ‖2 +

2

µ
(γt − λ∗)> (Axt + ct) +M2 (4.50)

where (c) uses the definitions θ̃t := λ∗ − λ̂t + θ, and γt := λ̂t + µqt − θ. Since Axt + ct is the

stochastic subgradient of the concave function D(λ) at λ = γt [cf. (4.17a)], we have

E
[
(γt − λ∗)> (Axt + ct)

]
≤ D(γt)−D(λ∗). (4.51)

Taking expectations on (4.49)-(4.50) over the random state st conditioned on qt and using

(4.51), we arrive at

E
[
‖qt+1−θ̃t/µ‖2

]
≤‖qt − θ̃t/µ‖2+

2

µ
(D(γt)−D(λ∗)) +M2 (4.52)

where we use the fact that D(λ) := E [Dt(λ)] in (4.11). Using the quadratic growth property of

D(λ) in (4.27) of Lemma 14, the recursion (4.52) further leads to

E
[
‖qt+1−θ̃t/µ‖2

]
≤ ‖qt − θ̃t/µ‖2−

2ε

µ
‖γt − λ∗‖2 +M2

(d)
=‖qt − θ̃t/µ‖2 − 2µε‖qt − θ̃t/µ‖2 +M2 (4.53)

where equality (d) uses the definitions θ̃t := λ∗ − λ̂t + θ and γt := λ̂t + µqt − θ, implying that

γt − λ∗ = µqt − θ̃t.
Now considering (cf. (4.53))

− 2µε‖qt − θ̃t/µ‖2 +M2 ≤ −2
√
µ‖qt − θ̃t/µ‖+ µ (4.54)
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and plugging it back into (4.53) yields

E
[
‖qt+1 − θ̃t/µ‖2

]
≤ ‖qt − θ̃t/µ‖2 − 2

√
µ‖qt − θ̃t/µ‖+ µ

=
(
‖qt − θ̃t/µ‖ −

√
µ
)2
. (4.55)

By the convexity of ( · )2, we further arrive at

E
[
‖qt+1 − θ̃t/µ‖

]2
≤ E

[
‖qt+1 − θ̃t/µ‖2

]
≤
(
‖qt − θ̃t/µ‖ −

√
µ
)2

(4.56)

which directly implies the argument (4.31) in the lemma. By checking Vieta’s formulas for

second-order equations, there exists B = Θ( 1√
µ) such that for ‖qt− θ̃t/µ‖ > B, inequality (4.54)

holds, and thus the lemma follows readily.

4.7.3 Proof of Theorem 7

Proof of (4.32a) in Theorem 7: Theorem 6 asserts that λ̂t eventually converges to the optimum

λ∗, w.p.1. Hence, there always exists a finite time Tρ and an arbitrarily small ρ such that for

t > Tρ, it holds that ‖λ∗/µ− λ̂t/µ‖ ≤ ρ. Using the definition θ̃t = λ∗ − λ̂t + θ, it then follows

by the triangle inequality that∣∣∣‖qt − θ̃t/µ‖ − ‖qt − θ/µ‖∣∣∣ ≤ ‖λ∗/µ− λ̂t/µ‖ ≤ ρ (4.57)

which also holds for qt+1.

Using (4.57) and the conditional drift (4.31) in Lemma 16, for t>Tρ and ‖qt − θ̃t/µ‖>B=

Θ(1/
√
µ), it holds that

E
[
‖qt+1 − θ/µ‖

∣∣∣qt] ≤ E
[∥∥∥qt+1 − θ̃t/µ

∥∥∥ ∣∣∣qt]+ ρ

≤
∥∥∥qt − θ̃t/µ∥∥∥−√µ+ ρ ≤ ‖qt − θ/µ‖ −

√
µ+ 2ρ. (4.58)

Choosing ρ such that
√
µ̃ :=

√
µ − 2ρ < 0, then for t > Tρ and ‖qt − θ/µ‖> B̃ :=B + ρ=

Θ(1/
√
µ), we have

E
[
‖qt+1 − θ/µ‖

∣∣∣qt] ≤ ‖qt − θ/µ‖ −√µ̃. (4.59)

Leveraging (4.59), we first show (4.32a) by constructing a super-martingale. Define the
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stochastic process at as

at := ‖qt − θ/µ‖ · 1
{

min
τ≤t
‖qτ − θ/µ‖ > B̃

}
, ∀t (4.60a)

and likewise the stochastic process bt as

bt :=
√
µ̃ · 1

{
min
τ≤t
‖qτ − θ/µ‖ > B̃

}
, ∀t. (4.60b)

Clearly, at tracks the distance between qt and θ/µ until the distance becomes smaller than B̃ for

the first time; and bt stops until ‖qt − θ/µ‖ ≤ B̃ for the first time as well.

With the definitions of at and bt, one can easily show that the recursion (4.59) implies

E [at+1|Ft] ≤ at − bt (4.61)

where Ft is the so-termed sigma algebra measuring the history of two processes. As at and bt
are both nonnegative, (4.61) allows us to apply the super-martingale convergence theorem [81,

Theorem E7.4], which almost surely establishes that: (i) the sequence at converges to a limit;

and (ii) the summation
∑∞

t=1 bt < ∞. Note that (ii) implies that limt→∞ bt = 0, w.p.1. Since
√
µ̃ > 0, it follows that the indicator function of bt eventually becomes null and thus

lim inf
t→∞

‖qt − θ/µ‖ ≤ B̃, w.p.1 (4.62)

which establishes that qt will eventually visit and then hover around a neighborhood of the

reference point θ/µ.

Proof of (4.32b) in Theorem 7: In complement to the sample-path result in (4.62), we next

derive (4.32b), which captures the long-term queue lengths averaged over all sample paths.

Similar to (4.49), we have

‖qt+1 − λ∗/µ‖2 ≤ (4.63)

‖qt − λ∗/µ‖2 + 2(qt − λ∗/µ)>(Axt + ct) +M2.

Using the definition γt := λ̂t + µqt − θ, (4.64) can be written as

‖qt+1 − λ∗/µ‖2 ≤ ‖qt − λ∗/µ‖2 (4.64)
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+
2

µ
(γt − λ∗)>(Axt + ct) +

2

µ
(θ − λ̂t)>(Axt + ct) +M2.

Defining the Lyapunov drift as ∆(qt) := 1
2(‖qt+1 − λ∗/µ‖2−‖qt − λ∗/µ‖2) and taking

expectations on (4.64) over st conditioned on qt, we have

µE [∆(qt)] ≤ E
[
(γt − λ∗)>(Axt+ct)

]
+ E

[
(θ−λ̂t)>(Axt + ct)

]
+µM2/2

(b)

≤ D(γt)−D(λ∗)+ E
[
(θ−λ̂t)>(Axt+ct)

]
+µM2/2 (4.65)

where (b) follows from (4.51).

Summing both sides over t = 1, . . . , T , taking expectations over all possible qt, and dividing

both sides by T , we arrive at

µ

2T

(
E
[
‖qT+1 − λ∗/µ‖2

]
− E

[
‖q1 − λ∗/µ‖2

])
≤ (4.66)

1

T

T∑
t=1

E[D(γt)]−D(λ∗)+
1

T

T∑
t=1

E
[
(θ−λ̂t)>(Axt+ct)

]
+
µM2

2
.

First, it is easy to show that

lim
T→∞

µ

2T

(
E
[
‖qT+1 − λ∗/µ‖2

]
− E

[
‖q1 − λ∗/µ‖2

])
(c)

≥ − lim
T→∞

µ

2T
E
[
‖q1 − λ∗/µ‖2

]
(d)
= 0 (4.67)

where (c) holds since ‖qT+1 − λ∗/µ‖2 ≥ 0, and (d) follows from the boundedness of ‖q1 − λ∗/µ‖2.

We next argue that the following equality holds

lim
T→∞

(1/T )
∑T

t=1 E
[
(θ − λ̂t)>(Axt + ct)

]
= O(µ). (4.68)

Rearranging terms in (4.68) leads to

lim
T→∞

1

T

T∑
t=1

E
[
(θ − λ̂t)>(Axt + ct)

]
(4.69)

= lim
T→∞

1

T

T∑
t=1

E

[(
θ − λ∗ + (λ∗−θ−λ̂t+θ)

)>
(Axt + ct)

]
.
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Since λ̂t converges to λ∗w.p.1 according to Theorem 6, there always exists a finite time Tρ such

that for t > Tρ, which implies that ‖λ∗ − θ − (λ̂t − θ)‖ ≤ ρ, w.p.1. Hence, together with the

Cauchy-Schwarz inequality, we have

(λ∗−θ−λ̂t+θ)>(Axt + ct)

≤‖λ∗−θ−(λ̂t−θ)‖‖Axt+ct‖
(d)

≤ ρM = O(ρ) (4.70)

where (d) follows since Tρ<∞ and constant M is as in Assumption 4. Plugging (4.70) into (4.69),

it follows that

lim
T→∞

(1/T )
∑T

t=1 E
[
(θ − λ̂t)>(Axt + ct)

]
(4.71)

≤ lim
T→∞

(1/T )
∑T

t=1 E
[
(θ − λ∗)>(Axt + ct)

]
+O(ρ)

(e)

≤‖λ∗ − θ‖ ·
∥∥∥∥ lim
T→∞

(1/T )
∑T

t=1 E [−Axt − ct]

∥∥∥∥+O(ρ)

where (e) simply follows from the Cauchy-Schwarz inequality.

Building upon (4.59), one can follow the arguments in [70, Theorem 4] to show that there

exist constants D1 =Θ(1/µ), and D2 =Θ(
√
µ), for any d, to obtain a large deviation bound as

lim
T→∞

1

T

T∑
t=1

P
(
‖qt − θ/µ‖ > B̃ + d

)
≤ D1e

−D2d (4.72)

where B̃ =Θ(1/
√
µ) as in (4.59). Intuitively speaking, (4.72) upper bounds the probability that the

steady-state qt deviates from θ/µ, and (4.72) implies that the probability that qit > θ/µ+B̃+d, ∀i
is exponentially decreasing in D2d.

Using the large deviation bound in (4.72), it follows that

0
(f)

≤ lim
T→∞

1

T

T∑
t=1

E[−Axt − ct] (4.73)

(g)

≤ lim
T→∞

1

T

T∑
t=1

1·M P (qt < M)
(h)

≤ 1·MD1e
−D2(θ/µ−B̃−M)

where (f) holds because taking expectation in (4.72) over all d implies that the expected queue

length is finite [cf. (4.3c)], which implies the necessary condition in (4.5); (g) follows from [69,

Lemma 4] which establishes that negative accumulated service residual
∑T

t=1 E[Axt + ct] may
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happen only when qt<M and the maximum value is bounded by ‖Axt+ct‖ ≤M in Assumption

4; and (h) uses the bound in (4.72) by choosing d = θ/µ− B̃ −M .

Setting θ =
√
µ log2(µ) in (4.73), there exists a sufficiently small µ such that−D2

(
log2(µ)/

√
µ−

B̃ −M
)
≤ 2 log(µ). Together with (4.73) and D1 =Θ(1/µ), the latter implies that∥∥∥∥ lim

T→∞
(1/T )

∑T
t=1 E[−Axt−ct]

∥∥∥∥ ≤ ‖1 ·MD1µ
2‖ = O(µ). (4.74)

Plugging (4.74) into (4.71), setting ρ = o(µ) in (4.71), and using ‖λ∗ − θ‖ = O(1), we arrive at

(4.68).

Letting T →∞ in (4.66), it follows from (4.67) and (4.68) that

0 ≤ lim
T→∞

1

T

T∑
t=1

E[D(γt)]−D(λ∗)+O(µ) +
µM2

2

(h)

≤ D
(

lim
T→∞

1

T

T∑
t=1

E[γt]

)
−D(λ∗)+O(µ) +

µM2

2
. (4.75)

where inequality (h) uses the concavity of the dual functionD(λ). Definingϕ := limT→∞
1
T

∑T
t=1 E[γt],

and using D(λ∗)−D(ϕ) ≥ ε
2‖λ∗ −ϕ‖2 in Lemma 14, (4.75) implies that

‖λ∗ −ϕ‖2≤ 2

ε

(
D(λ∗)−D(ϕ)

)
≤O(µ) +

µM2

ε

(i)
=O(µ) (4.76)

where (i) follows since constants M and ε are independent of µ. From (4.76), we can further

conclude that ‖λ∗ −ϕ‖ = O(
√
µ).

Recalling the definition γt := λ̂t + µqt − θ, we have that

lim
T→∞

1

T

T∑
t=1

E

[
γt
µ

]
−λ

∗

µ
= lim
T→∞

1

T

T∑
t=1

E

[
qt+

λ̂t
µ

]
−λ

∗

µ
− θ
µ

(j)
= lim

T→∞

1

T

T∑
t=1

E [qt]−
θ

µ

(k)

≤ 1

µ
‖λ∗ −ϕ‖ = O

(
1√
µ

)
(4.77)

where (j) follows from the convergence of λ̂t in Theorem 6, and inequality (k) uses the definition

of ϕ and ϕ− λ∗ ≤ ‖λ∗ −ϕ‖. Recalling that θ =
√
µ log2(µ) in (4.74) completes the proof.
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4.7.4 Proof of Theorem 8

Defining the Lyapunov drift as ∆(qt) := 1
2(‖qt+1‖2−‖qt‖2), and squaring the queue update, we

obtain

‖qt+1‖2 =‖qt‖2 + 2q>t (Axt + ct) + ‖Axt + ct‖2
(a)

≤‖qt‖2 + 2q>t (Axt + ct) +M2 (4.78)

where (a) follows from the definition of M in Assumption 4. Multiplying by µ/2 and adding

Ψt(xt), yields

µ∆(qt)+Ψt(xt) ≤ Ψt(xt) + µq>t (Axt + ct) + µM2/2

(b)
=Ψt(xt) + (γt − λ̂t + θ)>(Axt + ct) + µM2/2

(c)
=Lt(xt,γt) + (θ − λ̂t)>(Axt + ct) + µM2/2 (4.79)

where (b) uses the definition of γt, and (c) is the definition of the instantaneous Lagrangian. Taking

expectations on the both sides of (4.79) over st conditioned on qt, it holds that

µE
[
∆(qt)

∣∣qt]+ E
[
Ψt(xt)

∣∣qt]
(d)
=D(γt) + E

[
(θ − λ̂t)>(Axt + ct)

∣∣qt]+ µM2/2

(e)

≤Ψ∗ + E
[
(θ − λ̂t)>(Axt + ct)

∣∣qt]+ µM2/2 (4.80)

where (d) follows from the definition of the dual function (4.10), while (e) uses the weak duality

that D(γt) ≤ Ψ̃∗, and the fact that Ψ̃∗ ≤ Ψ∗ (cf. the discussion after (4.6)).

Taking expectations on both sides of (4.80) over all possible qt, summing over t = 1, . . . , T ,

dividing by T , and letting T →∞, we arrive at

lim
T→∞

1

T

T∑
t=1

E [Ψt(xt)]

(f)

≤Ψ∗+ lim
T→∞

1

T

T∑
t=1

E
[
(θ−λ̂t)>(Axt+ct)

]
+
µM2

2
+ lim
T→∞

µ‖q1‖2
2T

(g)

≤Ψ∗+ lim
T→∞

1

T

T∑
t=1

E
[
(θ − λ̂t)>(Axt + ct)

]
+
µM2

2
(4.81)
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where (f) comes from E[‖qT+1‖2] ≥ 0, and (g) follows because ‖q1‖ is bounded. One can follow

the derivations in (4.69)-(4.74) to show (4.68), which is the second term in the RHS of (4.81).

Therefore, we have from (4.81) that

lim
T→∞

1

T

T∑
t=1

E [Ψt(xt)] ≤ Ψ∗+O(µ) +
µM2

2
(4.82)

which completes the proof.



Chapter 5

Online learning viewpoint of network
resource management

5.1 Introduction

Online convex optimization (OCO) is an emerging methodology for sequential inference with

well documented merits especially when the sequence of convex costs varies in an unknown and

possibly adversarial manner [185, 65, 141].

5.1.1 Prior art

Starting from the seminal papers [185] and [65], most of the early works evaluate OCO algorithms

with a static regret, which measures the difference of costs (a.k.a. losses) between the online

solution and the overall best static solution in hindsight. If an algorithm incurs static regret that

increases sub-linearly with time, then its performance loss averaged over an infinite time horizon

goes to zero; see also [141, 64], and references therein.

However, static regret is not a comprehensive performance metric [15]. Take online parameter

estimation as an example. When the true parameter varies over time, a static benchmark (time-

invariant estimator) itself often performs poorly so that achieving sub-linear static regret is no

longer attractive. Recent works [15, 62, 71, 112] extend the analysis of static regret to that of

dynamic regret, where the performance of an OCO algorithm is benchmarked by the best dynamic

solution with a-priori information on the one-slot-ahead cost function. Sub-linear dynamic regret

is proved to be possible, if the dynamic environment changes slow enough for the accumulated

variation of either costs or per-slot minimizers to be sub-linearly increasing with respect to the

102
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Table 5.1: A summary of related works on discrete time OCO

Reference Type of benchmark Long-term constraint Adversarial constraint
[185] Static and dynamic No No

[65, 141, 64] Static No No
[15, 112, 62, 71, 24, 6] Dynamic No No

[106, 174, 82, 168] Static Yes No
[140] Dynamic Yes No

This work Dynamic Yes Yes

time horizon. When the per-slot costs depend on previous decisions, the so-termed competitive

difference can be employed as an alternative of the static regret [24, 6].

The aforementioned works [15, 24, 6, 62, 71, 112] deal with dynamic costs focusing on

problems with time-invariant constraints that must be strictly satisfied, but do not allow for

instantaneous violations of the constraints. The long-term effect of such instantaneous violations

was studied in [106], where an online algorithm with sub-linear static regret and sub-linear

accumulated constraint violation was also developed. The regret bounds in [106] have been

improved in the discrete time domain [174] and the continuous time domain [125], respectively.

Decentralized optimization with consensus constraints, as a special case of having long-term but

time-invariant constraints, has been studied in [82, 168, 140]. Nevertheless, [106, 125, 82, 174,

168, 140] do not deal with OCO under time-varying adversarial constraints.

5.1.2 Our contributions

In this context, the present paper considers OCO with time-varying constraints that must be

satisfied in the long term. Under this setting, the learner first takes an action without knowing

a-priori either the adversarial cost or the time-varying constraint, which are revealed by the nature

subsequently. Its performance is evaluated by: i) dynamic regret that is the optimality loss relative

to a sequence of instantaneous minimizers with known costs and constraints; and, ii) dynamic fit

that accumulates constraint violations incurred by the online learner due to the lack of knowledge

about future constraints. We compare the OCO setting here with the existing ones in Table 5.1.

We further introduce a modified online saddle-point (MOSP) method in this novel OCO

framework, where the learner deals with time-varying costs as well as time-varying but long-term

constraints. We analytically establish that MOSP simultaneously achieves sub-linear dynamic

regret and fit, provided that the accumulated variations of both minimizers and constraints grow

sub-linearly with time. This result provides valuable insights for OCO with long-term constraints:

When the dynamic environment comprising both costs and constraints does not change on average,
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and the order of variations is known, the online decisions provided by MOSP are as good as the

best dynamic solution over a long time horizon.

To demonstrate the impact of these results, we further apply the proposed MOSP approach

to a dynamic network resource allocation task, where online management of resources is sought

without knowing future network states. Existing algorithms include first- and second-order

methods in the dual domain [99, 173, 55, 12, 170, 35], which are tailored for time-invariant

deterministic formulations. To capture the temporal variations of network resources, stochastic

formulation of network resource allocation has been extensively pursued since the seminal work

of [162]; see also the celebrated stochastic dual gradient method in [116, 108]. These stochastic

approximation-based approaches assume that the time-varying costs are i.i.d. or generally samples

from a stationary ergodic stochastic process [118, 49]. However, performance of most stochastic

schemes is established in an asymptotic sense, considering the ensemble of per slot averages or

infinite samples across time. Clearly, stationarity may not hold in practice, especially when the

stochastic process involves human participation. Inheriting merits of the OCO framework, the

proposed MOSP approach operates in a fully online mode with only information at previous time

slots, and further admits finite-sample performance analysis under a sequence of deterministic, or

even adversarial costs and constraints within a budget of temporal variation.

Relative to existing works, the main contributions of this paper are summarized as follows.

c1) We generalize the standard OCO framework with only adversarial costs in [185, 65, 141, 64]

to account for both adversarial costs and constraints. Different from the regret analysis

in [106, 82, 125, 174, 168], performance here is established relative to the best dynamic

benchmark, via metrics that we term dynamic regret and fit.

c2) We develop a MOSP algorithm to tackle this novel OCO problem, and analytically establish

that MOSP yields simultaneously sub-linear dynamic regret and fit, provided that the

accumulated variations of per-slot minimizers and constraints are known to grow sub-

linearly with time.

c3) Our novel approach is tailored for online resource allocation tasks, where MOSP is compared

with the popular stochastic dual gradient approach. Relative to the latter, MOSP remains

operational in a broader practical setting without probabilistic assumptions. Numerical tests

demonstrate the gain of MOSP over existing alternatives.
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5.2 OCO with long-term time-varying constraints

In this section, we introduce the generic OCO formulation with long-term time-varying constraints,

along with pertinent metrics to evaluate an OCO algorithm.

5.2.1 Problem formulation

We begin with the classical OCO setting, where constraints are time-invariant and must be strictly

satisfied. OCO can be viewed as a repeated game between a learner and nature [141, 185, 65].

Consider that time is discrete and indexed by t. Per slot t, a learner selects an action xt from

a convex set X ⊆ RI , and subsequently nature chooses a (possibly adversarial) loss function

ft( · ) : RI → R through which the learner incurs a loss ft(xt). The convex set X is a-priori

known and fixed over the entire time horizon. Although this standard OCO setting is appealing to

various applications such as online regression and classification [185, 65, 141], it does not account

for potential variations of (possibly unknown) constraints, and does not deal with constraints that

can possibly be satisfied in the long term rather than a slot-by-slot basis. Online optimization with

time-varying and long-term constraints is motivated for applications such as navigation, tracking,

localization, and resource allocation [116, 125, 108, 25]. Taking resource allocation as an example,

time-varying long-term constraints are usually imposed to tolerate instantaneous violations when

available resources cannot satisfy user requests, and hence allow flexible adaptation of online

decisions to temporal variations of resource availability.

To broaden the applicability of OCO to these scenarios, we consider that per slot t, a learner

selects an action xt from a known and fixed convex set X ⊆ RI , and then nature reveals not only

a loss function ft(·) : RI → R but also a time-varying (possibly adversarial) penalty function

gt(·) : RI → RI . This function leads to a time-varying constraint gt(x) ≤ 0, which is driven by

the unknown dynamics in various applications, e.g., on-demand data request arrivals in resource

allocation. Different from the known and fixed set X , the time-varying constraint gt(x) ≤ 0 can

vary arbitrarily or even adversarially from slot to slot. It is revealed after the learner makes her/his

decision, and is hence hard to be satisfied in every time slot. This is indeed a major difference when

comparing to settings where the time-varying constraints are revealed before making decisions.

Therefore, the goal in this context is to find a sequence of online solutions {xt ∈ X} that minimize

the aggregate loss, and ensures that the constraints {gt(xt) ≤ 0} are satisfied in the long-term on
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average. Specifically, we aim to solve the following online optimization problem

min
{xt∈X ,∀t}

T∑
t=1

ft(xt) (5.1a)

s. to
T∑
t=1

gt(xt) ≤ 0 (5.1b)

where T is the time horizon, xt ∈ RI is the decision variable, ft is the cost function, gt :=

[g1
t , . . . , g

I
t ]> denotes the constraint function with ith entry git : RI → R, and X ∈ RI is a convex

set. The formulation (5.1) extends the standard OCO framework to accommodate adversarial

time-varying constraints that must be satisfied in the long term. Complemented by algorithm

development and performance analysis to be carried in the following sections, the main contribution

of the present paper is incorporation of long-term and time-varying constraints to markedly broaden

the scope of OCO.

5.2.2 Performance and feasibility metrics

Regarding performance of online decisions {xt}Tt=1, static regret is adopted as a metric by standard

OCO schemes, under time-invariant and strictly satisfied constraints. The static regret measures

the difference between the online loss of an OCO algorithm and that of the best fixed solution in

hindsight [185, 65, 141]. Extending the definition of static regret over T slots to accommodate

time-varying constraints, it can be written as

Regs
T :=

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗) (5.2)

where the best static solution x∗ is obtained as

x∗ ∈ arg min
x∈X

T∑
t=1

ft(x) s. to gt(x) ≤ 0, ∀t. (5.3)

A desirable OCO algorithm in this case is the one yielding a sub-linear regret [106, 174],

meaning Regs
T = o(T ). Consequently, limT→∞Regs

T /T = 0 implies that the algorithm is “on

average” no-regret, or in other words, not worse asymptotically than the best fixed solution x∗.

Though widely used in various OCO applications, the aforementioned static regret has several

limitations. For instance, it fails to capture the convergence of online decisions {xt} relative to the
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fixed best solution x∗, since small regrets can be also achieved by having ft(xt) oscillate around

ft(x
∗) [125]. Even when the sub-linear static regret does imply xt approaching x∗, targeting a

rather coarse benchmark may be less useful especially in dynamic settings. For instance, [15,

Example 2] shows that the gap between the best static and the best dynamic benchmark can be as

large as O(T ). Furthermore, since the time-varying constraint gt(xt) ≤ 0 is not observed before

making a decision xt, its feasibility can not be checked instantaneously.

In response to the quest for improved benchmarks in this dynamic setup, two metrics are

considered here: dynamic regret and dynamic fit. The notion of dynamic regret (also termed

tracking regret or adaptive regret) has been recently introduced in [15, 62, 71, 112] to offer a

competitive performance measure of OCO algorithms under time-invariant constraints. We adopt

it in the setting of (5.1) by incorporating time-varying constraints

Regd
T :=

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗
t ) (5.4)

where the benchmark is now formed via a sequence of best dynamic solutions {x∗t } for the

instantaneous cost minimization problem subject to the instantaneous constraint, namely

x∗t ∈ arg min
x∈X

ft(x) s. to gt(x) ≤ 0. (5.5)

Clearly, the dynamic regret is always larger than the static regret in (5.2), i.e., Regs
T ≤ Regd

T ,

because
∑T

t=1 ft(x
∗) is always no smaller than

∑T
t=1 ft(x

∗
t ) according to the definitions of x∗

and x∗t . Hence, a sub-linear dynamic regret implies a sub-linear static regret, but not vice versa.

The dynamic regret is suitable for cases where the goal is to track the time-varying solutions; e.g.,

AC power flow [42], and energy management policy [104].

To ensure feasibility of online decisions, the notion of dynamic fit is introduced to measure

the accumulated violation of constraints; under time-invariant long-term constraints [106, 82] or

under time-varying constraints [125]. It is defined as

Fitd
T :=

∥∥∥∥∥∥
[

T∑
t=1

gt(xt)

]+
∥∥∥∥∥∥ . (5.6)

Observe that the dynamic fit is zero if the accumulated violation
∑T

t=1 gt(xt) is entry-wise

less than zero. However, enforcing
∑T

t=1 gt(xt) ≤ 0 is different from restricting xt to meet

gt(xt) ≤ 0 in each and every slot. While the latter readily implies the former, the long-term
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(aggregate) constraint allows adaptation of online decisions to the environment dynamics; as a

result, it is tolerable to have gt(xt) ≥ 0 and gt+1(xt+1) ≤ 0. Note that the definition of dynamic

fit in (5.6) implicitly assumes that the instantaneous constraint violations can be compensated by

the later strictly feasible decisions. When this is the case for resource allocation in power and

cloud networks (see Section IV), extra modifications are required to account for other type of

constraints, which go beyond the scope of the present paper.

An ideal algorithm in this broader OCO framework is the one that achieves both sub-linear

dynamic regret and sub-linear dynamic fit. A sub-linear dynamic regret implies “no-regret”

relative to the clairvoyant dynamic solution on the long-term average; i.e., limT→∞Regd
T /T = 0;

and a sub-linear dynamic fit indicates that the online strategy is also feasible on average; i.e.,

limT→∞ Fitd
T /T = 0. Unfortunately, the sub-linear dynamic regret is not achievable in general,

even under the special case of (5.1) where the time-varying constraint is absent [15]. For this

reason, we aim at designing and analyzing an online strategy that generates a sequence {xt}Tt=1

ensuring sub-linear dynamic regret and fit, under mild conditions that must be satisfied by the cost

and constraint variations.

5.3 MOSP: Modified online saddle-point method

In this section, a modified online saddle-point method is developed to solve (5.1), and its perfor-

mance and feasibility are analyzed using the dynamic regret and fit metrics.

5.3.1 Algorithm development

Consider now the per-slot problem (5.5), which contains the current objective ft(x), the current

constraint gt(x) ≤ 0, and a time-invariant constraint set X . With λ ∈ RI+ denoting the Lagrange

multiplier associated with the time-varying constraint, the online (partial) Lagrangian of (5.5) can

be expressed as

Lt(x,λ) := ft(x) + λ>gt(x) (5.7)

where x ∈ X remains implicit. For the online Lagrangian (5.7), we introduce a modified online

saddle point (MOSP) approach, which takes a modified descent step in the primal domain, and

a dual ascent step at each time slot t in a Gauss-Seidel manner. Specifically, given the previous

primal iterate xt−1 and the current dual iterate λt at each slot t, the current decision xt is the
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minimizer of the following optimization problem

min
x∈X
∇ft−1(xt−1)>(x− xt−1) + λ>t gt−1(x) +

‖x− xt−1‖2
2α

(5.8)

where α is a positive stepsize, and ∇ft−1(xt−1) is the gradient1 of primal objective ft−1(x) at

x = xt−1. After the current decision xt is made, ft(x) and gt(x) are observed, and the dual

update takes the form

λt+1 =
[
λt + µ∇λLt(xt,λt)

]+
=
[
λt + µgt(xt)

]+ (5.9)

where µ is also a positive stepsize, and∇λLt(xt,λt) = gt(xt) is the gradient of online Lagrangian

(5.7) with respect to (w.r.t.) λ at λ = λt. Clearly, updating λt and xt at slot t only requires

information of the cost and constraint at the previous slot.

Remark 3. The primal gradient step of the classical saddle-point approach in [82, 106, 125]

is tantamount to minimizing a first-order approximation of Lt−1(x,λt) at x = xt−1 plus a

proximal term. We call the recursion (5.8) and (5.9) as a modified online saddle-point approach,

since the primal update (5.8) is not an exact gradient step when the constraint gt(x) is nonlinear

w.r.t. x. Similar to the primal update of OCO with long-term but time-invariant constraints in

[174], the minimization in (5.8) penalizes the exact constraint violation gt(x) instead of its first-

order approximation, which improves control of constraint violations and facilitates performance

analysis of MOSP. Nevertheless, when gt(x) is linear, (5.8) and (5.9) reduce to the online saddle-

point approach using the Gauss-Seidel update, which is different to those with the Jacobi one in

[82, 106, 125].

Remark 4. When gt(x) is linear or quadratic, the computational complexity of (5.8) is fairly low,

and closed-form solutions are available. When gt(x) is generally a convex function, penalizing

the exact constraint in (5.8) comes with higher computational complexity than the saddle-point

method. However, as (5.8) is strongly convex, iterative solvers can find the minimizer at linear

convergence rate. Linearization techniques can be also incorporated to facilitate its implementation

under fast dynamics, in which case the accuracy depends on the smoothness of gt(x), and the

variability of {xt} (that can be e.g., controlled by the choice of stepsize α).

1One can replace the gradient by one of the sub-gradients when ft(x) is non-differentiable. The performance
analysis still holds true for this case.
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Algorithm 6 Modified online saddle-point (MOSP) method

1: Initialize: primal iterate x0, dual iterate λ1, and proper stepsizes α and µ.
2: for t = 1, 2 . . . do
3: Update primal variable xt by solving (5.8).
4: Observe the current cost ft(x) and constraint gt(x).
5: Update the dual variable λt+1 via (5.9).
6: end for

5.3.2 Performance analysis

We proceed to show that for MOSP, the dynamic regret in (5.4) and the fit in (5.6) are both

sub-linearly increasing, if the accumulated variations of per-slot minimizers and constraints are

known to be sub-linearly growing. Before formally stating this result, we assume that the following

conditions are satisfied.

Assumption 5. For every t, the cost function ft(x) and the time-varying constraint gt(x) in (5.1)

are convex.

Assumption 6. For every t, ft(x) has bounded gradient on X ; i.e., ‖∇ft(x)‖ ≤ G, ∀x ∈ X ;

and gt(x) is bounded on X ; i.e., ‖gt(x)‖ ≤M, ∀x ∈ X .

Assumption 7. The radius of the convex feasible set X is bounded; i.e., ‖x−y‖ ≤ R, ∀x,y ∈ X .

Assumption 8. There exists a constant ε > 0, and an interior point x̃t ∈ X such that gt(x̃t) ≤
−ε1, ∀t.

Assumption 9. The slack constant ε in Assumption 8 satisfies ε > V̄ (g), where the point-wise

maximum variation of consecutive constraints is defined as

V̄ (g) := max
t

max
x∈X

∥∥[gt+1(x)−gt(x)]+
∥∥. (5.10)

Assumption 5 is necessary for regret analysis in the OCO setting. Assumption 6 bounds

primal and dual gradients per slot, which is also typical in OCO [141, 174, 82, 62]. Assumption 7

restricts the action set to be bounded. Assumption 8 is Slater’s condition, which guarantees the

existence of a bounded optimal Lagrange multiplier [13]. Assumption 9 indicates that the slack

constant ε is larger than the maximum variation of constraints. Although not always satisfied,

it is a key assumption in our proof of the bounded dual iterate (the scaled fit). Equivalently, it

requires mini,t maxx∈X [−git(x)]+ > maxt maxx∈X
∥∥[gt+1(x)−gt(x)

]
+
∥∥, which is valid when

the feasible region defined by gt(x) ≤ 0 is large enough, or, the trajectory of gt(x) is smooth
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enough across time. Besides, Assumption 9 is analogous to the assumption of bounded multipliers

in prior OCO works involving long-term constraints [168, 82]. One simple example for Assumption

9 to hold is that (cf. I = 1)

gt(x) := 10x+ cos(πt), with x ∈ X :={x| − 2≤x≤2} (5.11)

where we have ε = mint maxx∈X [−gt(x)]+ = 19, and V̄ (g) ≤ 2, so that ε > V̄ (g).

Under these assumptions, we are on track to first provide an upper bound for the dynamic fit.

Theorem 9. Under Assumptions 5-9 and the dual variable initialization λ1 = 0, the dual iterate

for the MOSP recursion (5.8)-(5.9) is bounded by

‖λt‖ ≤ ‖λ̄‖ := µM +
2GR+R2/(2α) + (µM2)/2

ε− V̄ (g)
, ∀t (5.12)

and the dynamic fit in (5.6) is upper-bounded by

Fitd
T ≤

‖λT+1‖
µ

≤ ‖λ̄‖
µ

= M +
2GR/µ+R2/(2αµ)+M2/2

ε− V̄ (g)
(5.13)

where G, M , R, and ε are as in Assumptions 6-8.

Proof: See Appendix 5.5.1.

Theorem 9 asserts that under the condition on the time-varying constraints, ‖λt‖ is uniformly

upper-bounded, and more importantly, its scaled version ‖λT+1‖/µ upper bounds the dynamic

fit. Observe that with a fixed primal stepsize α, Fitd
T is in the order of O(1/µ), thus a larger dual

stepsize essentially enables a better satisfaction of long-term constraints. In addition, a smaller

V̄ (g) leads to a smaller dynamic fit, which also makes sense intuitively.

In the next theorem, we further bound the dynamic regret.

Theorem 10. Under Assumptions 5-9 and the dual variable initialization λ1 = 0, the MOSP

recursion (5.8)-(5.9) yields a dynamic regret

Regd
T ≤

RV ({x∗t }Tt=1)

α
+
αG2T

2
+
µM2(T + 1)

2
+
R2

2α

+ ‖λ̄‖V ({gt}Tt=1) (5.14)
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where V ({x∗t }Tt=1) is the accumulated variation of the per-slot minimizers x∗t defined as

V ({x∗t }Tt=1) :=

T∑
t=1

‖x∗t − x∗t−1‖︸ ︷︷ ︸
V (x∗t )

(5.15)

and V ({gt}Tt=1) is the accumulated variation of constraints

V ({gt}Tt=1) :=
T∑
t=1

max
x∈X

∥∥[gt+1(x)−gt(x)]+
∥∥︸ ︷︷ ︸

V (gt)

. (5.16)

Proof: See Appendix 5.5.2.

Theorem 10 asserts that MOSP’s dynamic regret is upper-bounded by a constant depending

on the accumulated variations of per-slot minimizers and time-varying constraints as well as the

primal and dual stepsizes. While the dynamic regret in the current form (5.14) is hard to grasp, the

next corollary shall demonstrate that Regd
T can be very small.

Based on Theorems 9-10, we can readily arrive at the following corollary regarding the optimal

stepsizes.

Corollary 1. Under the same assumptions of Theorems 9-10, if the primal and dual stepsizes are

chosen such that

α = µ = max

{√
V ({x∗t }Tt=1)

T
,

√
V ({gt}Tt=1)

T

}
(5.17)

then the dynamic regret is upper-bounded by

Regd
T =O

(
max

{√
V ({x∗t }Tt=1)T ,

√
V ({gt}Tt=1)T

})
(5.18)

and the dynamic fit is upper-bounded by

Fitd
T =O

(
max

{
T

V ({x∗t }Tt=1)
,

T

V ({gt}Tt=1)

})
. (5.19)

Proof: The corollary follows by plugging (5.12) into (5.14), and optimizing (5.13) and (5.14)

over the primal-dual stepsizes.

According to Theorems 9-10 and Corollary 1, two sets of stepsizes are discussed next.

S1) Stepsizes without knowledge of variations: If the primal and dual stepsizes are chosen
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such that α = µ = O(T−
1
3 ), then the dynamic fit is upper-bounded by

Fitd
T =O(T

2
3 ) (5.20a)

and the dynamic regret is bounded by

Regd
T =O

(
max

{
V ({x∗t }Tt=1)T

1
3, V ({gt}Tt=1)T

1
3, T

2
3

})
. (5.20b)

S2) Stepsizes with knowledge of variations: Assume that there exists a constant β ∈ [0, 1)

such that the temporal variations satisfy V ({x∗t }Tt=1) = o(T β) and V ({gt}Tt=1) = o(T β). Corol-

lary 1 then implies that choosing the stepsizes as α = µ = O(T
β−1
2 ) leads to the dynamic fit

Fitd
T =O(T 1−β) = o(T ) (5.21a)

and the corresponding dynamic regret

Regd
T =O

(
T
β+1
2

)
= o(T ). (5.21b)

In the case (S1), sub-linear regret and fit can be achieved given that V ({x∗t }Tt=1) = o(T
2
3 )

and V ({gt}Tt=1) = o(T
2
3 ). In the case (S2), the necessary conditions for the environment can be

relaxed to V ({x∗t }Tt=1) = o(T ) and V ({gt}Tt=1) = o(T ), provided that a-priori knowledge of the

environment is available. For example, when allocating resources to smart grids, the temporal

variations of the best dynamic solutions and instantaneous constraints can be estimated using

day-ahead forecasting of electricity loads and prices. Corollary 1 provides valuable insights for

choosing optimal stepsizes in non-stationary settings. Specifically, adjusting stepsizes to match the

variability of the environment is the key to achieving the optimal dynamic regret and fit. Intuitively,

when the variation is fast (a larger β), slowly decaying stepsizes (thus larger stepsizes) can better

track the potential changes; and vice versa.

It is instructive to give several cases where sub-linear accumulated variations emerge, so that

the bounds in (5.21) hold.

C1) Intermittent switches: With x∗t 6= x∗t+1 or gt 6= gt+1 defining a switch, the number of

switches is sub-linear over T ; i.e.,
∑T

t=1 1{x∗t 6=x∗t+1}=T β , and
∑T

t=1 1{gt 6=gt+1}=T β , ∀β ∈ [0, 1).

It then follows that V ({x∗t }Tt=1) = O(T β), and V ({gt}Tt=1) = O(T β), since the one-slot variation

of the minimizer and the constraint is bounded; see Assumptions 6-7.

C2) Decreasing variations: When the one-slot variations are decreasing over time such
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that V (x∗t ) = O(tβ−1) and V (gt) = O(tβ−1), ∀β ∈ [0, 1), the accumulated variations of

the per-slot minimizers and the consecutive constraints become V ({x∗t }Tt=1) = O(T β), and

V ({gt}Tt=1) = O(T β).

Other cases do exist for which the accumulated variation is sub-linear, including the interplay

between (C1) and (C2).

Remark 5. Theorems 9-10 and Corollary 1 are in the spirit of the recent works in [185], [15, 112,

62, 71] and [140], where the regret bounds are established with respect to a dynamic benchmark in

OCO without long-term time-varying constraints. Specifically, [15, 112] consider dynamic regret

bounds for strongly-convex loss functions. For the general convex loss functions considered here,

[185] reports the dynamic regret bound in the form of

Regd
T =O

(√
V ({x∗t }Tt=1)T

)
(5.22)

and [15] states the bound in the form of

Regd
T =O

(
V ({ft}Tt=1)

1
3T

2
3

)
(5.23)

where the accumulated variation of loss functions is defined as V ({ft}Tt=1) :=
∑T

t=1 maxx∈X ‖ft+1(x)−ft(x)‖.
The dynamic regret bound in [71] considers a hybrid version of (5.22) and (5.23), when the ef-

fect of dynamic models is further accounted for in the dynamic regret bounds of [62, 140].

When the functional variation V ({ft}Tt=1) is not directly comparable to the variation of minimiz-

ers V ({x∗t }Tt=1), our regret bound in (5.18) immediately reduces to (5.22) in [185], by setting

α =
√
V ({x∗t }Tt=1)/T . Note that [185, 15, 112, 62, 71, 140] do not account for long-term and

time-varying constraints, while the regret analysis is generalized here to the setting with long-term

constraints. Interestingly though, in the considered setting, sub-linear dynamic regret and fit can

be achieved when the environment consisting of the per-slot minimizer and the time-varying con-

straint does not vary on average, that is, V ({x∗t }Tt=1) and V ({gt}Tt=1) are sub-linearly increasing

over T . Selecting the optimal stepsizes requires the knowledge of variations, and thus it is also

promising to develop a parameter-free MOSP using the doubling trick [71].

5.3.3 Beyond dynamic regret

Although the dynamic benchmark in (5.4) is more competitive than the static one in (5.2), it is

worth noting that the sequence of the per-slot minimizer x∗t in (5.5) is not the optimal solution to
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problem (5.1). Consider the offline optimal solutions to (5.1), i.e.,

{xoff
t }Tt=1∈ arg min

{xt∈X ,∀t}

T∑
t=1

ft(xt) s. to
T∑
t=1

gt(xt)≤0. (5.24)

Computing the per-slot minimizer x∗t in (5.5) only requires one-slot-ahead information (namely,

ft(x) and gt(x)), while computing each xoff
t within {xoff

t }Tt=1 requires information over the entire

time horizon (that is, {ft(x)}Tt=1 and {gt(x)}Tt=1). For this reason, we use the superscript “off” in

{xoff
t }Tt=1 to emphasize that this solution comes from offline computation with information over T

slots. Note that for the cases without long-term constraints [15, 62, 71, 112], the offline solutions

{xoff
t }Tt=1 coincides with the sequence of per-slot minimizers {x∗t }Tt=1.

Regarding feasibility, {xoff
t }Tt=1 exactly satisfies the long-term constraint (5.1b), while the

solution of MOSP satisfies (5.1b) on average under mild conditions (cf. Corollary 1). For

optimality, the cost of the online decisions {xt}Tt=1 attained by MOSP is further benchmarked by

the offline solutions {xoff
t }Tt=1. To this end, define MOSP’s optimality gap as

OptGapoff
T :=

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
off
t ). (5.25a)

Intuitively, if {xoff
t }Tt=1 are close to {x∗t }Tt=1, the dynamic regret Regd

T is able to provide an

accurate performance measure in the sense of OptGapoff
T . Specifically, one can decompose the

optimality gap as

OptGapoff
T =

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗
t )︸ ︷︷ ︸

U1

+
T∑
t=1

ft(x
∗
t )−

T∑
t=1

ft(x
off
t )︸ ︷︷ ︸

U2

(5.25b)

where U1 corresponds to the dynamic regret Regd
T in (5.4) capturing the regret relative to the

sequence of per-slot minimizers with one-slot-ahead information, and U2 is the difference between

the performance of per-slot minimizers and the offline optimal solutions. Although the second

term appears difficult to quantify, we will show next that U2 is driven by the accumulated variation

of the dual functions associated with (5.5).

To this end, consider the dual function of the instantaneous primal problem (5.5), which can

be expressed by minimizing the online Lagrangian in (5.7) at time t, namely [13]

Dt(λ) := min
x∈X

Lt(x,λ) = min
x∈X

ft(x) + λ>gt(x). (5.26)
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Likewise, the dual function of (5.1) over the entire horizon is

D(λ) := min
{xt∈X ,∀t}

T∑
t=1

Lt(xt,λ)

(a)
=

T∑
t=1

min
xt∈X

Lt(xt,λ)
(b)
=

T∑
t=1

Dt(λ) (5.27)

where equality (a) holds since the minimization is separable across the summand at time t, and

equality (b) is due to the definition of the per-slot dual function in (5.26). As the primal problems

(5.1) and (5.5) are both convex, Slater’s condition in Assumption 8 implies that strong duality

holds. Accordingly, U2 in (5.25b) can be written as

T∑
t=1

ft(x
∗
t )−

T∑
t=1

ft(x
off
t ) =

T∑
t=1

max
λt≥0

Dt(λt)−max
λ≥0

T∑
t=1

Dt(λ) (5.28)

which is the difference between the dual objective of the static best solution, i.e., λ∗∈arg maxλ≥0
∑T

t=1Dt(λ),

and that of the per-slot best solution for (5.26), i.e., λ∗t ∈ arg maxλt≥0Dt(λt). Leveraging this

special property of the dual problem, we next establish that U2 can be bounded by the variation of

the dual function, thus providing an estimate of the optimality gap (5.25a).

Proposition 6. Define the variation of the dual function (5.26) from time t to t+ 1 as

V (Dt) := max
λ≥0
‖Dt+1(λ)−Dt(λ)‖ (5.29)

and the total variation over the time horizon T as V ({Dt}Tt=1) :=
∑T

t=1 V (Dt). Then the cost

difference between the best offline solution and the best dynamic solution satisfies

T∑
t=1

ft(x
∗
t )−

T∑
t=1

ft(x
off
t ) ≤ 2TV ({Dt}Tt=1) (5.30)

where x∗t is the minimizer of the instantaneous problem (5.5), and xoff
t solves (5.1) with all future

information available. Combined with (5.25b), it readily follows that

OptGapoff
T ≤ Regd

T + 2TV ({Dt}Tt=1) (5.31)

where Regd
T is defined in (5.4), and OptGapoff

T in (5.25).

Proof: Instead of going to the primal domain, we upper bound U2 via the dual representation in
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(5.28). Letting t̃ denote any slot in T := {1, . . . , T}, we have

∑
t∈T

max
λ≥0
Dt(λ)−max

λ≥0

∑
t∈T
Dt(λ) (5.32)

≤
∑
t∈T

(
Dt(λ∗t )−Dt(λ∗t̃ )

)
≤ T max

t∈T

{
Dt(λ∗t )−Dt(λ∗t̃ )

}
.

The first inequality comes from the definitionλ∗t ∈arg maxλ≥0Dt(λ). Note that if maxt∈T {Dt(λ∗t )−
Dt(λ∗t̃ )} ≤ 2V ({Dt}Tt=1), the proposition readily follows from (5.32). We will prove this in-

equality by contradiction. Assume there exists a slot t0 ∈ T such that Dt0(λ∗t0) − Dt0(λ∗
t̃
) >

2V ({Dt}Tt=1), which implies that

Dt̃(λ∗t̃ )
(a)

≤ Dt0(λ∗
t̃
) + V ({Dt}Tt=1)

(b)
< Dt0(λ∗t0)− V ({Dt}Tt=1)

(c)

≤ Dt̃(λ∗t0), ∀ t̃ ∈ T (5.33)

where inequalities (a) and (c) come from the fact that V ({Dt}Tt=1) is the accumulated variation

over T slots, and hence maxt1,t2∈T ‖Dt1(λ) − Dt2(λ)‖ ≤ V ({Dt}Tt=1), while (b) is due to

the hypothesis above. Note that Dt̃(λ∗t̃ ) < Dt̃(λ
∗
t0) in (5.33) contradicts the fact that λ∗

t̃
is the

maximizer of Dt̃(λ). Therefore, we have Dt(λ∗t̃ )−Dt(λ
∗
t )≤2V ({Dt}Tt=1), which completes the

proof.

The following remark provides an approach to improving the bound in Proposition 1.

Remark 6. Although the optimality gap in (5.31) appears to be at least linear w.r.t. T , one can use

the “restarting” trick for dual variables, similar to that for primal variables in the unconstrained

case; see e.g., [15]. Specifically, if the total variation V ({Dt}Tt=1) is known a-priori, one can

divide the entire time horizon T := {1, . . . , T} into dT/∆T e sub-horizons (each with ∆T =

o
(
T/V ({Dt}Tt=1)

)
slots), and restart the dual iterate λ at the beginning of each sub-horizon. By

assuming that V ({Dt}Tt=1) is sub-linear w.r.t. T , one can guarantee that ∆T ≥ 1 always exists. In

this case, the optimality gap in (5.31) can be improved by

OptGapoff
T ≤ dT/∆T eRegd

∆T
+ 2∆TV ({Dt}Tt=1) (5.34a)

and the dynamic fit is the summation over each sub-horizon

Fitd
T ≤ dT/∆T eFitd

∆T
. (5.34b)



118

Data center  kMapping node  j

Figure 5.1: A diagram of online network resource allocation. Per time t, mapping node j has an
exogenous workload bjt plus that stored in the queue qjt , and schedules workload xjkt to data center
k. Data center k serves an amount of workload ykt out of the assigned

∑J
j=1 x

jk
t as well as that

stored in its queue qJ+k
t . The thickness of each edge is proportional to its capacity.

To this end, if the regularity conditions of the environment in (5.21) are satisfied, one can properly

set the primal-dual stepsizes to guarantee the sub-linear regret and fit on each sub-horizon. Corre-

spondingly, the optimality gap and the dynamic fit in (5.34) are also both sub-linearly growing

with time. Interested readers are referred to [15] for details of this restarting trick, which are

omitted here due to space limitation.

5.4 Application to network resource allocation

In this section, we solve the network resource allocation problem within the OCO framework, and

present numerical experiments to demonstrate the merits of our MOSP solver.

5.4.1 Online network resource allocation

Consider the resource allocation problem over a cloud network [25], which is represented by a

directed graph G = (I, E) with node set I and edge set E , where |I| = I and |E| = E. Nodes

considered here include mapping nodes collected in the set J = {1, . . . , J}, and data centers

collected in the set K = {1, . . . ,K}; i.e., we have I = J ⋃K.

Per time t, each mapping node j receives an exogenous data request bjt , and forwards the

amount xjkt to each data center k in accordance with bandwidth availability. Each data center k

schedules workload ykt according to its resource availability. Regarding ykt as the weight of a virtual

outgoing edge (k, ∗) from data center k, edge set E := {(j, k),∀j ∈ J , k ∈ K}⋃{(k, ∗), ∀k ∈
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K} contains all the links connecting mapping nodes with data centers, and all the “virtual” edges

coming out of the data centers. The I ×E node-incidence matrix is formed with the (i, e)-th entry

A(i,e) =


1, if link e enters node i

−1, if link e leaves node i

0, else.

(5.35)

For compactness, collect the data workloads across edges e = (i, j) ∈ E in a resource allocation

vector xt := [x11
t , . . . , x

JK
t , y1

t , . . . , y
K
t ]> ∈ RE+, and the exogenous load arrival rates of all nodes

in a vector bt := [b1t , . . . , b
J
t , 0 . . . , 0]> ∈ RI+. Then, the aggregate (endogenous plus exogenous)

workloads of all nodes are given by Axt + bt. When the i-th entry of Axt + bt is positive, there

is service residual at node i; otherwise, node i over-serves the current workload arrival. Assume

that each data center and mapping node has a local data queue to buffer unserved workloads

[116]. With qt := [q1
t , . . . , q

J+K
t ]> collecting the queue lengths at each mapping node and data

center, the queue update is qt+1 = [qt + Axt + bt]
+, where [ · ]+ ensures that the queue length

is always non-negative. The bandwidth limit of link (j, k) is x̄jk, and the resource capability of

data center k is ȳk, which can be compactly expressed by x ∈ X with X := {0 ≤ x ≤ x̄} and

x̄ := [x̄11, . . . , x̄JK , ȳ1, . . . , ȳK ]>. The overall system diagram is depicted in Fig. 5.1.

For each data center, the power cost fkt (ykt ) := fk(ykt ; θkt ) depends on a time-varying param-

eter θkt , which captures the energy price and the renewable generation at data center k during

slot t. The bandwidth cost f jkt (xjkt ) := f jk(xjkt ; θjkt ) characterizes the transmission delay and is

parameterized by a time-varying scalar θjkt . Scalars θkt and θjkt can be readily extended to vector

forms. To keep the exposition simple, we use scalars to represent time-varying factors at nodes

and edges.

Per slot t, the instantaneous cost ft(xt) aggregates the costs of power consumed at all data

centers plus the bandwidth costs at all links, namely

ft(xt) :=
∑
k∈K

fkt (ykt )︸ ︷︷ ︸
power cost

+
∑
j∈J

∑
k∈K

f jkt (xjkt )︸ ︷︷ ︸
bandwidth cost

(5.36)

where the objective can be also written as ft(xt) := f(xt;θt) with θt := [θ1
t , . . . , θ

K
t , θ

11
t , . . . , θ

JK
t ]>

concatenating all time-varying parameters. Aiming to minimize the accumulated cost while serving

all workloads, the optimal workload routing and allocation strategy in this cloud network is the
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solution of the following optimization problem

min
{xt∈X ,∀t}

T∑
t=1

ft(xt) s. to qt+1 = [qt + Axt + bt]
+ , ∀t

q1 ≥ 0, qT+1 = 0 (5.37)

where q1 is the given initial queue length, and qT+1 = 0 guarantees that all workloads arrived

have been served at the end of the scheduling horizon. Note that (5.37) is time-coupled, and

generally challenging to solve without information of future workload arrivals and time-varying

cost functions. Therefore, we reformulate (5.37) to fit our OCO formulation (5.1) by relaxing the

queue recursion in (5.37), namely

qT+1 ≥ qT + AxT + bT ≥ q1 +

T∑
t=1

(Axt + bt) (5.38)

which readily leads to
∑T

t=1(Axt + bt) ≤ qT+1 − q1 ≤ 0, since q1 ≥ 0 and qT+1 = 0.

Therefore, instead of solving (5.37), we aim to tackle a relaxed problem, given by

min
{xt∈X ,∀t}

T∑
t=1

ft(xt) s. to
T∑
t=1

(Axt + bt) ≤ 0 (5.39)

where the workload flow conservation constraint Axt + bt ≤ 0 must be satisfied in the long term

rather than slot-by-slot. Clearly, (5.39) is in the form of (5.1). Therefore, the MOSP algorithm of

Section 5.3 can be leveraged to solve (5.39) in an online fashion, with provable performance and

feasibility guarantees. Specifically, with gt(xt) = Axt + bt, the primal update (5.8) boils down

to a simple gradient update xt =PX
(
xt−1 − α∇ft−1(xt−1)− αA>λt

)
, where PX (·) defines

projection onto the convex set X . The dual update (5.9) is λt+1 =
[
λt + µ(Axt + bt)

]+, which

can be nicely regarded as a scaled version of the queue dynamics in (5.37), with qt = λt/µ.

In addition to simple closed-form updates, MOSP can also afford a fully decentralized imple-

mentation by exploiting the problem structure of network resource allocation, where each mapping

node or data center decides the amounts on all its outgoing links, and only exchanges information

with its one-hop neighbors. Per time slot t, the primal update at mapping node j includes variables

on all its outgoing links, given by

xjkt =
[
xjkt−1−α∇f jkt−1(xjkt−1)−α

(
λkt −λjt

)]x̄jk
0
, ∀k ∈ K (5.40a)
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Algorithm 7 Distributed MOSP for network resource allocation
1: Initialize: primal iterate x0, dual iterate λ1, and proper stepsizes α and µ.
2: for t = 1, 2 . . . do
3: Each mapping node j performs (5.40a) and each data center k runs (5.40c).
4: Mapping nodes and data centers observe local costs and workload arrivals.
5: Each mapping node j performs (5.40b) and each data center k performs (5.40d).
6: Mapping nodes (data centers) send multipliers to all neighboring data centers (nodes).
7: end for

and the dual update reduces to

λjt+1 =

[
λjt + µ

(
bjt −

∑
k∈K

xjkt

)]+

. (5.40b)

Likewise, for data center k, the primal update becomes

ykt =
[
ykt−1 − α

(
∇fkt−1(ykt−1)− λkt

)]ȳk
0

(5.40c)

where [ · ]ȳk0 := min{ȳk,max{· , 0}}, and the dual recursion is

λkt+1 =

[
λkt + µ

(∑
j∈J

xjkt − ykt

)]+

. (5.40d)

Distributed MOSP for online network resource allocation is summarized in Algorithm 7.

5.4.2 Revisiting stochastic dual (sub)gradient

The dynamic network resource allocation problem in Section 5.4.1 has so far been studied in the

stochastic setting [28, 25]. Classical approaches include Lyapunov optimization [162, 116] and the

stochastic dual (sub)gradient method [108], both of which rely on stochastic approximation (SA)

[118]. In the context of stochastic optimization, the time-varying vectors {ξt}with ξt :=[θ>t ,b
>
t ]>

appearing in the cost and constraint are assumed to be independent realizations of a random

variable Ξ.2 In an SA-based stochastic optimization algorithm, per time t, a policy first observes

a realization ξt of the random variable Ξ, and then (stochastically) selects an action xt ∈ X .

However, in contrast to minimizing the observed cost in the OCO setting, the goal of the stochastic
2Extension is also available when {ξt} constitute a sample path from an ergodic stochastic process {Ξt}, which

converges to a stationary distribution; see e.g., [49, 130].
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resource allocation is usually to minimize the limiting average of the expected cost subject to the

so-termed stability constraint, namely

min
{xt∈X ,qt,∀t}

lim
T→∞

1

T

T∑
t=1

E[ft(xt)] (5.41a)

s. to qt+1 = [qt + Axt + bt]
+, ∀t (5.41b)

lim
T→∞

1

T

T∑
t=1

E [qt] ≤ 0 (5.41c)

where he expectation in (5.41a) is taken over Ξ and the randomness of xt and qt induced by all

possible sample paths {ξ1, . . . , ξt} via (5.41b); and the stability constraint (5.41c) implies a finite

bound on the accumulated constraint violation. In contrast to the observed costs in (5.37), each

decision xt is evaluated by all possible realizations in Ξ here. However, as qt in (5.41b) couples

the optimization variables over an infinite time horizon, (5.41) is intractable in general.

Prior works [116, 53, 108, 25] have demonstrated that (5.41) can be tackled via a tractable

stationary relaxation, given by

min
{xt∈X ,∀t}

lim
T→∞

1

T

T∑
t=1

E[ft(xt)] (5.42a)

s. to lim
T→∞

1

T

T∑
t=1

E [Axt + bt] ≤ 0 (5.42b)

where the time-coupling constraints (5.41b) and (5.41c) are relaxed to the limiting average con-

straint (5.42b). Such a relaxation can be verified similar to the queue relaxation in (5.38); see

also [116]. Note that (5.42) is still challenging since it involves expectations in both costs and

constraints, and the distribution of Ξ is usually unknown. Even if the joint probability distribution

function were available, finding the expectations would not scale with the dimensionality of

Ξ. A common remedy is to use the stochastic dual gradient (SDG) iteration (a.k.a. Lyapunov

optimization) [162, 116, 25]. Specifically, with λ ∈ RI+ denoting the multipliers associated with

the expectation constraint (5.42b), the SDG method first observes one realization ξt at each slot t,

and then performs the dual update as

λt+1 =
[
λt + µ(Axt + bt)

]+
, ∀t (5.43)

where λt is the dual iterate at time t, Axt + bt is the stochastic dual gradient, and µ is a positive
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(and typically constant) stepsize. The actual allocation or the primal variable xt appearing in

(5.43) needs be found by solving the following sub-problems, one per slot t

xt ∈ arg min
x∈X

ft(x) + λ>t (Ax + bt). (5.44)

For the considered network resource allocation problem, SDG in (5.43)-(5.44) entails a well-

known cost-delay tradeoff [116]. Specifically, with f∗ denoting the optimal objective (5.42), SDG

can achieve anO(µ)-optimal solution such that limT→∞(1/T )
∑T

t=1 E [ft (xt)]≤f∗+O(µ), and

guarantee queue lengths3 satisfying limT→∞(1/T )
∑T

t=1 E [‖qt‖]=O(1/µ). Therefore, reducing

the optimality gap O(µ) will essentially increase the average network delay O(1/µ).

Remark 7. The optimality of SDG is established relative to the offline optimal solution of (5.42),

which can be thought as the time-average optimality gap in (5.25a) under the OCO setting.

Interestingly though, the optimality gap under the stochastic setting is equivalent to the (expected)

dynamic regret (5.4), since their (expected) difference V ({E[Dt]}Tt=1) in (5.31) reduces to zero.

To see this, note that E[ft(x)] and E[Ax + bt] are time-invariant, hence the dual problem of each

per-slot subproblem in (5.42) is time-invariant. This reduction means that the SDG solver of the

dynamic problem in (5.41) leverages its inherent stationarity (through the stationary dual problem),

in contrast to the non-stationary nature of the OCO framework.

Remark 8. Below we highlight several differences of the novel MOSP in Algorithm 7 with the

SDG recursion in (5.43)-(5.44) for the dynamic network resource allocation task.

(D1) From an operational perspective, SDG observes the current state ξt first, and then

performs the resource allocation decision xt accordingly. Therefore, at the beginning of slot t,

SDG needs to precisely know the non-causal information ξt. Inheriting the merits of OCO, on

the other hand, MOSP operates in a fully predictive mode, which decides xt without knowing the

cost ft(x) and the constraint gt(x) (or ξt) at time t. This feature of MOSP is of major practical

importance when costs and availability of resources are not available at the point of making

decisions; e.g., online demand response in smart grids [78, 104] and resource allocation in wireless

networking [160].

(D2) From a computational point of view, MOSP reduces to a simple saddle-point recursion

with primal (projected) gradient descent and dual gradient ascent for the network resource alloca-

tion problem, both of which incur affordable complexity. However, the primal update of SDG in

(5.44) generally requires solving a convex program per time slot t, which leads to much higher
3According to Little’s law [95], the time-average delay is proportional to the time-average queue length given the

arrival rate.
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Figure 5.2: Time-average cost for Case 1.

computational complexity in general.

(D3) With regards to the theoretical claims, the time-varying vector ξt in SDG typically

requires a rather restrictive probabilistic assumption, to establish SDG optimality in either the

ensemble average [116] or the limiting ergodic average sense [130]. In contrast, leveraging the

OCO framework, MOSP admits finite-sample performance analysis with non-stochastic observed

costs and constraints, which can even be adversarial.

5.4.3 Numerical experiments

In this section, we provide numerical tests to demonstrate the merits of the proposed MOSP

algorithm in the application of dynamic network resource allocation. Consider the geographical

workload routing and allocation task in (5.39) with J = 10 mapping nodes and K = 10 data

centers. The instantaneous network cost in (5.36) is

ft(xt) :=
∑
k∈K

pkt (y
k
t )2 +

∑
j∈J

∑
k∈K

cjk(xjkt )2 (5.45)

where pkt is the energy price at data center k at time t, and cjk is the per-unit bandwidth cost

for transmitting from mapping node j to data center k. With the bandwidth limit x̄jk uni-

formly randomly generated within [10, 100], we set the bandwidth cost of each link (j, k) as

cjk = 40/x̄jk, ∀j, k. The resource capacities {ȳk, ∀k} at all data centers are uniformly randomly

generated from [100, 200]. We consider the following two cases for the time-varying parameters

{pkt , ∀t, k} and {bjt , ∀t, j}:
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Figure 5.3: Dynamic regret for Case 1.
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Figure 5.4: Dynamic fit for Case 1.

Case 1) Parameters {pkt , ∀t, k} and {bjt ,∀t, j} are independently drawn from time-invariant

distributions. Specifically, pkt is uniformly distributed over [1, 3], and the delay-tolerant workload

bjt arrives at each mapping node j according to a uniform distribution over [50, 150].

Case 2) Parameters {pkt , ∀t, k} and {bjt ,∀t, j} are generated according to non-stationary

stochastic processes. Specifically, pkt = sin(πt/12) +nkt with i.i.d. noise nkt uniformly distributed

over [1, 3], while bjt = 50 sin(πt/12) + vjt with i.i.d. noise vjt uniformly distributed over [99, 101].

One can verify that Assumption 9 is satisfied in this case, as the constraints vary slowly. Intuitively,

it means that the network capacity margin is large relative to the temporal variation of arrival rates

here.

Finally, with time horizon T = 500, the stepsize in (5.40a) and (5.40c) is set to α = 0.05/T 1/3,

and for (5.40b) and (5.40d) to µ = 50/T 1/3. MOSP is benchmarked by three strategies: SDG in
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Figure 5.5: Time-average cost for Case 2.
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Figure 5.6: Dynamic regret for Case 2.

Section 5.4.2, the sequence of per-slot best minimizers in (5.5), and the offline optimal solution

that solves (5.1) at once with all future costs and constraints available. Note that at the beginning

of each slot t, the exact prices {pkt ,∀k} and demands {bjt ,∀j} for the coming slot are generally

not available in practice [1, 78, 160, 68]. Since the original SDG updates (5.43) and (5.44) require

non-causal knowledge of {pkt ,∀k} and {bjt ,∀j} to decide xt, we modify them for fairness in this

online setting by using the prices and demands at slot t− 1 to obtain xt, which we term online

dual gradient (ODG). As shown next, different constant stepsizes for ODG’s dual update in (5.43)

lead to quite different performance and feasibility behaviors; i.e., a larger stepsize results in higher

regret but smaller fit, and vice versa. For this reason, ODG is studied under two different stepsizes:

µODG = 0.5 balancing the regret and fit of ODG, and µODG = 1 allowing ODG to have similar

fit with MOSP.
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Figure 5.7: Dynamic fit for Case 2.

Figs. 5.2-5.4 show the test results for Case 1 under i.i.d. costs and constraints. Clearly, MOSP

in Fig. 5.2 converges to a smaller time-average cost than ODG with the two stepsizes. The

time-average cost of MOSP is slightly higher than the per-slot optimal solution, as well as the

offline optimal solution with all information of the costs and constraints available over horizon

T . Fig. 5.3 confirms the conclusion made from Fig. 5.2, where the dynamic regret (cf. (5.4))

of MOSP grows much slower than that of ODG. Regarding the dynamic fit (cf. (5.6)), Fig. 5.4

demonstrates that ODG with µODG = 1 has a smaller fit than that of µODG = 0.5, and similar to

the dynamic fit of MOSP. According to the well-known trade-off between cost (optimality) and

delay (constraint violations) in [116], increasing µODG will improve the dynamic fit of ODG but

degrade its dynamic regret. Therefore, MOSP is favorable in Case 1 since it has much smaller

regret when its dynamic fit is similar to that of ODG with µODG = 1. It is worth mentioning that

theoretically speaking, the dynamic regret of MOSP may not be sub-linear in this i.i.d. case, since

the accumulated cost and constraint variation is not necessarily small enough (cf. Theorem 10).

However, MOSP is robust in this aspect at least for the numerical tests we carried.

Simulation tests using non-stationary costs and constraints are shown in Figs. 5.5-5.7. Different

from Case 1, the time-average cost of MOSP is not only smaller than ODG, but also smaller than

the per-slot optimum obtained via (5.3); see Fig. 5.5. A similar conclusion can be also drawn

through the growths of dynamic regret in Fig. 5.6. From a high level, this is because the difference

between the cost of the per-slot minimizers and that of the offline solutions is no longer small in

the non-stationary case. Regarding Fig. 5.7, both ODG and MOSP have finite dynamic fits in

the sense that the accumulated constraint violations do not increase with time. The dynamic fit

of MOSP is much smaller than that of ODG with µODG = 0.5, and comparable to that of ODG
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with µODG = 1. Therefore, in this non-stationary case, MOSP also markedly outperforms ODG

in both regret and fit.

5.5 Proofs of lemmas and theorems

Before proving Theorems 9 and 10, we first bound the variation of the dual variable for the MOSP

recursion (5.8)-(5.9). With the dual drift defined as ∆(λt) :=
(
‖λt+1‖2 − ‖λt‖2

)
/2, we have

the following lemma.

Lemma 19. Per slot t, the dual drift of the MOSP recursion (5.8)-(5.9) is upper-bounded as

∆(λt) ≤ µλ>t gt(xt) +
µ2

2
‖gt(xt)‖2. (5.46)

Proof: Squaring the dual variable update (5.9), we have

‖λt+1‖2 =
∥∥∥[λt + µgt(xt)

]+∥∥∥2
≤ ‖λt + µgt(xt)‖2

= ‖λt‖2 + 2µλ>t gt(xt) + µ2‖gt(xt)‖2. (5.47)

The proof is complete after dividing both sides by 2.

5.5.1 Proof of Theorem 9

The proof follows the steps in [174, Theorem 7], but generalizes the result from static regret with

time-invariant constraints to dynamic regret with time-varying and long-term constraints. Recall

that the primal iterate xt+1 is the optimal solution to the following optimization problem (cf. (5.8))

min
x∈X

ht(x) :=∇ft(xt)>(x− xt)+λ>t+1gt(x)+
1

2α
‖x− xt‖2. (5.48)

Then for any interior point x̃t ∈ X in Assumption 8, it follows that

∇ft(xt)>(xt+1−xt) + λ>t+1gt(xt+1)+
1

2α
‖xt+1−xt‖2

≤∇ft(xt)>(x̃t−xt) + λ>t+1gt(x̃t) +
1

2α
‖x̃t−xt‖2

(a)

≤∇ft(xt)>(x̃t−xt)− ελ>t+11 +
1

2α
‖x̃t−xt‖2

(b)

≤∇ft(xt)>(x̃t−xt)− ε‖λt+1‖+
1

2α
‖x̃t−xt‖2 (5.49)
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where (a) follows by choosing x̃t such that gt(x̃t) ≤ −ε1 and recalling the non-negativity of

λt+1; inequality (b) is because ‖λt+1‖ ≤ λ>t+11 holds for any non-negative vector λt+1.

Rearranging terms in (5.49), it follows that

λ>t+1gt(xt+1) ≤ ∇ft(xt)>(x̃t − xt)−∇ft(xt)>(xt+1−xt)− ε‖λt+1‖+
1

2α
‖x̃t − xt‖2−

1

2α
‖xt+1 − xt‖2

(c)

≤∇ft(xt)>(x̃t − xt)−∇ft(xt)>(xt+1 − xt)−ε‖λt+1‖+
R2

2α
(d)

≤‖∇ft(xt)‖‖x̃t−xt‖+‖∇ft(xt)‖‖xt+1−xt‖−ε‖λt+1‖+
R2

2α
(e)

≤ 2GR− ε‖λt+1‖+
R2

2α
(5.50)

where (c) holds since X confines ‖x̃t − xt‖2 ≤ R2 and ‖xt+1 − xt‖2 ≥ 0; (d) uses the Cauchy-

Schwartz inequality twice; (e) leverages the bounds in Assumption 7, namely, ‖∇ft(xt)‖ ≤ G,

‖x̃t − xt‖ ≤ R, and ‖xt+1−xt‖ ≤ R.

Plugging (5.50) into (5.46) in Lemma 19, we have

∆(λt+1) ≤ µλ>t+1gt+1(xt+1) +
µ2

2
‖gt+1(xt+1)‖2

(f)

≤ µλ>t+1

(
gt+1(xt+1)− gt(xt+1)

)
− εµ‖λt+1‖+ 2µGR+

µR2

2α
+
µ2M2

2
(g)

≤ µλ>t+1

[
gt+1(xt+1)− gt(xt+1)

]+− εµ‖λt+1‖+ 2µGR+
µR2

2α
+
µ2M2

2
(h)

≤ µV̄ (g)‖λt+1‖−εµ‖λt+1‖+2µGR+
µR2

2α
+
µ2M2

2
(5.51)

where (f) uses the upper bound in Assumption 6 such that ‖gt+1(xt+1)‖ ≤ M , (g) holds since

λt+1 ≥ 0, and (h) follows from the Cauchy-Schwartz inequality and the definition of the maximum

variation V̄ (g) in Assumption 9.

We prove the dual upper bound (5.12) by contradiction. Without loss of generality, suppose

that t+ 2 is the first time that (5.12) does not hold. Therefore, we have

‖λt+1‖ ≤ ‖λ̄‖ = µM +
2GR+R2/(2α) + (µM2)/2

ε− V̄ (g)
(5.52a)

and correspondingly

‖λt+2‖ > ‖λ̄‖ = µM +
2GR+R2/(2α) + (µM2)/2

ε− V̄ (g)
. (5.52b)
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In this case, it follows that

‖λt+1‖ ≥ ‖λt+2‖ − ‖λt+2 − λt+1‖
= ‖λt+2‖ − ‖[λt+1 + µgt+1(xt+1)]+ − λt+1‖
(i)

≥ ‖λt+2‖ − ‖µgt+1(xt+1)‖
(j)
>

2GR+R2/(2α) + (µM2)/2

ε− V̄ (g)
(5.53)

where (i) is due to the non-expansive property of the projection operator, and inequality (j) uses

(5.52b) and ‖gt+1(xt+1)‖ ≤ M in Assumption 6. However, since ε > V̄ (g), (5.51) implies

that we have ∆(λt+1) < 0 if (5.53) holds. By definition of the dual drift, ∆(λt+1) < 0 implies

that ‖λt+2‖ < ‖λt+1‖, which contradicts (5.52a) and (5.52b). In addition, observe that the dual

variable is initialized by λ1 = 0, and consequently ‖λ2‖ ≤ µM . Therefore, for every t, we have

that ‖λt‖ ≤ ‖λ̄‖ holds.

Using the dual recursion in (5.9), it follows thatλT+1 ≥ λT+µgT (xT ) ≥ λ1+
∑T

t=1 µgt(xt).

Rearranging terms, we have

T∑
t=1

gt(xt) ≤
λT+1

µ
− λ1

µ
≤ λT+1

µ
. (5.54)

With λT+1 ≥ 0, (5.54) implies that
[∑T

t=1 gt(xt)
]+
≤ λT+1/µ, which completes the proof by

taking norms on both sides and using the dual upper bound (5.12).

5.5.2 Proof of Theorem 10

With ht(x) defining the objective in (5.48), it can be shown that ht(x) is 1/α-strongly convex,

which implies that for any x,y ∈ RI , we have [119, Theorem 2.1.8]

ht(y) ≥ ht(x) +∇ht(x)> (y − x) +
1

2α
‖y − x‖2. (5.55)

Since xt+1 is the minimizer of the problem minx∈X ht(x), the optimality condition [13] implies

that

∇ht(xt+1)>(y − xt+1) ≥ 0, ∀y ∈ X . (5.56)
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Setting y = x∗t and x = xt+1 in (5.55), we have that (cf. (5.56))

ht(x
∗
t )≥ht(xt+1) +

1

2α
‖x∗t − xt+1‖2. (5.57)

Hence, replacing ht(x) with the objective in (5.48) leads to

∇ft(xt)> (xt+1−xt)+λ>t+1gt(xt+1)+
‖xt+1−xt‖2

2α
(5.58)

(a)

≤∇ft(xt)>(x∗t−xt)+λ>t+1gt(x
∗
t )+
‖x∗t−xt‖2

2α
−‖xt+1−x∗t ‖2

2α

where (a) uses the strong convexity of the objective in (5.8); see also [174, Corollary 1]. Adding

ft(xt) in (5.58) yields

ft(xt)+∇ft(xt)>(xt+1−xt)+λ>t+1gt(xt+1)+
‖xt+1−xt‖2

2α

≤ft(xt)+∇ft(xt)> (x∗t−xt)+λ>t+1gt(x
∗
t ) +

‖x∗t−xt‖2
2α

− ‖x
∗
t−xt+1‖2

2α
(b)

≤ft(x∗t ) + λ>t+1gt(x
∗
t )+
‖x∗t−xt‖2

2α
−‖x

∗
t−xt+1‖2

2α
(c)

≤ft(x∗t ) +
‖x∗t−xt‖2

2α
− ‖x

∗
t−xt+1‖2

2α
(5.59)

where (b) is due to the convexity of ft(x), and (c) comes from the fact that λt+1 ≥ 0 and the

per-slot optimal solution x∗t is feasible (i.e., gt(x
∗
t ) ≤ 0) such that λ>t+1gt(x

∗
t ) ≤ 0.

Next, we bound the term∇ft(xt)> (xt+1−xt) by

−∇ft(xt)> (xt+1−xt) ≤ ‖∇ft(xt)‖‖xt+1 − xt‖ (5.60)

≤‖∇ft(xt)‖
2

2η
+
η

2
‖xt+1−xt‖2

(d)

≤ G2

2η
+
η

2
‖xt+1 − xt‖2

where η is an arbitrary positive constant, and (d) is from the bound of gradients in Assumption 6.

Plugging (5.60) into (5.59), we have

ft(xt) + λ>t+1gt(xt+1) ≤ft(x∗t ) +
(η

2
− 1

2α

)
‖xt+1−xt‖2 +

1

2α

(
‖x∗t−xt‖2−‖x∗t−xt+1‖2

)
+
G2

2η

(e)
=ft(x

∗
t )+

1

2α

(
‖x∗t−xt‖2−‖x∗t−xt+1‖2

)
+
αG2

2
(5.61)

where (e) follows by choosing η = 1/α so that η/2−1/(2α)=0.
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Using the dual drift bound (5.46) in Lemma 19 again, we have

∆(λt+1)/µ+ ft(xt)

≤ft(xt) + λ>t+1gt(xt+1) + λ>t+1gt+1(xt+1)− λ>t+1gt(xt+1) +
µ

2
‖gt+1(xt+1)‖2

(f)

≤ft(x∗t )+
1

2α

(
‖x∗t−xt‖2−‖x∗t−xt+1‖2

)
+λ>t+1(gt+1(xt+1)− gt(xt+1))+

µ‖gt+1(xt+1)‖2
2

+
αG2

2
(g)

≤ft(x∗t )+
1

2α

(
‖x∗t−xt‖2−‖x∗t−xt+1‖2

)
+ λ>t+1 [gt+1(xt+1)− gt(xt+1)]+ +

µM2

2
+
αG2

2
(h)

≤ft(x∗t )+
1

2α

(
‖x∗t−xt‖2−‖x∗t−xt+1‖2

)
+‖λt+1‖V (gt) +

µM2

2
+
αG2

2
(5.62)

where (f) follows from (5.61); (g) uses non-negativity of λt+1 and the gradient upper bound

‖gt+1(x)‖ ≤M,∀x ∈ X ; and (h) follows from the Cauchy-Schwartz inequality and the definition

of the constraint variation V (gt) in (5.16).

By interpolating intermediate terms in ‖x∗t−xt‖2−‖x∗t−xt+1‖2, we have that

‖x∗t−xt‖2−‖x∗t−xt+1‖2

=‖x∗t−xt‖2−‖xt − x∗t−1‖2 + ‖xt−x∗t−1‖2−‖x∗t−xt+1‖2

=‖x∗t−x∗t−1‖‖x∗t − 2xt + x∗t−1‖+ ‖xt−x∗t−1‖2−‖x∗t−xt+1‖2
(i)

≤2R‖x∗t − x∗t−1‖+ ‖xt−x∗t−1‖2−‖x∗t−xt+1‖2 (5.63)

where (i) follows from the radius of X in Assumption 7 such that ‖x∗t − 2xt + x∗t−1‖ ≤ ‖x∗t −
xt‖+ ‖xt − x∗t−1‖ ≤ 2R. Plugging (5.63) into (5.62), it readily leads to

∆(λt+1)/µ+ ft(xt) ≤ ft(x∗t )+‖λt+1‖V (gt)+
µM2

2
+
αG2

2

+
1

2α

(
2R‖x∗t−x∗t−1‖+ ‖xt−x∗t−1‖2−‖x∗t−xt+1‖2

)
. (5.64)

Summing up (5.64) over t = 1, 2, . . . , T , we find

T∑
t=1

∆(λt+1)/µ+
T∑
t=1

ft(xt)

≤
T∑
t=1

ft(x
∗
t )+

1

2α

T∑
t=1

(
‖xt−x∗t−1‖2−‖x∗t−xt+1‖2

)
+
RV ({x∗t }Tt=1)

α
+

T∑
t=1

‖λt+1‖V (gt) +
µM2T

2
+
αG2T

2
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(j)

≤
T∑
t=1

ft(x
∗
t )+

1

2α

(
‖x1−x∗0‖2−‖x∗T−xT+1‖2

)
+
RV ({x∗t }Tt=1)

α
+ ‖λ̄‖

T∑
t=1

V (gt)+
µM2T

2
+
αG2T

2

(k)

≤
T∑
t=1

ft(x
∗
t )+

1

2α

(
‖x1−x∗0‖2

)
+
RV ({x∗t }Tt=1)

α
+ ‖λ̄‖V ({gt}Tt=1) +

µM2T

2
+
αG2T

2
(5.65)

where (j) uses the upper bound of ‖λt‖ in (5.12) that we define as ‖λ̄‖, and (k) follows from the

definition of accumulated variations V ({gt}Tt=1) in (5.16). The definition of dynamic regret in

(5.4) finally implies that

Regd
T ≤

RV ({x∗t }Tt=1)

α
+
‖x1−x∗0‖2

2α
+‖λ̄‖V ({gt}Tt=1) +

µM2T

2
+
αG2T

2
−

T∑
t=1

∆(λt+1)

µ

=
RV ({x∗t }Tt=1)

α
+
‖x1−x∗0‖2

2α
+‖λ̄‖V ({gt}Tt=1) +

µM2T

2
+
αG2T

2
− ‖λT+2‖2

2µ
+
‖λ2‖2

2µ
(l)

≤RV ({x∗t }Tt=1)

α
+
R2

2α
+‖λ̄‖V ({gt}Tt=1) +

µM2T

2
+
αG2T

2
+
µM2

2
(5.66)

where (l) follows since: i) ‖x1 − x∗0‖ ≤ R due to the compactness of X ; ii) ‖λT+2‖2 ≥ 0; and,

iii) ‖λ2‖2 ≤ µ2M2 if λ1 = 0. This completes the proof.



Chapter 6

Model-free interactive optimization for
mobile edge computing

6.1 Introduction

Internet-of-Things (IoT) envisions an intelligent infrastructure of networked smart devices offering

task-specific monitoring and control services [134]. Leveraging advances in embedded systems,

contemporary IoT devices are featured with small-size and low-power designs, but their computa-

tion and communication capabilities are limited. A prevalent solution during the past decade was

to move computing, control, and storage resources to the remote cloud (a.k.a. data centers). Yet,

the cloud-based IoT architecture is challenged by high latency due to directly communications

with the cloud, which certainly prevents real-time applications [38]. Along with other features of

IoT, such as extreme heterogeneity and unpredictable dynamics, the need arises for innovations

in network design and management to allow for adaptive online service provisioning, subject to

stringent delay constraints [86].

From the network design vantage point, fog is viewed as a promising architecture for IoT that

distributes computation, communication, and storage closer to the end IoT users, along the cloud-

to-things continuum [38]. In the fog computing paradigm, service provisioning starts at the network

edge, e.g., smartphones, and high-tech routers, and only a portion of tasks will be offloaded to the

powerful cloud for further processing (a.k.a. computation offloading) [133, 105, 166]. Existing

approaches for computation offloading either focus on time-invariant static settings, or, rely on

stochastic optimization approaches such as Lyapunov optimization to deal with time-varying

cases; see [107] and references therein. Nevertheless, static settings cannot capture the changing

134
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IoT environment, and the stationarity commonly assumed in stochastic optimization literature

may not hold in practice, especially when the stochastic process involves human participation

as in IoT. From the management perspective, online network control, which is robust to non-

stationary dynamics and amenable to low-complexity implementations, remains an uncharted

territory [105, 107].

Indeed, the primary goal of this paper is an algorithmic pursuit of online network optimization

suitable for emerging tasks in IoT. Focusing on such algorithmic challenges, online convex

optimization (OCO) is a promising methodology for sequential tasks with well-documented merits,

especially when the sequence of convex costs varies in an unknown and possibly adversarial

manner [185]. Aiming to empower traditional fog management policies with OCO, most available

OCO works benchmark algorithms with a static regret, which measures the difference of costs

(a.k.a. losses) between the online solution and the best static solution in hindsight [65, 48].

However, static regret is not a comprehensive performance metric in dynamic settings such as

those encountered with IoT [71].

6.1.1 Prior art

Recent works extend the analysis of static to that of dynamic regret [62, 71], but they deal with

time-invariant constraints that cannot be violated instantaneously. Tailored for fog computing

setups that need flexible adaptation of online decisions to dynamic resource availability, OCO

with time-varying constraints was first studied in [25], along with its adaptive variant in [27],

and the optimal regret bound in this setting was first established in [117]. Yet, the approaches in

[27, 25, 117] remain operational under the premise that the loss functions are explicitly known, or,

their gradients are readily available. Clearly, none of these two assumptions can be easily satisfied

in IoT settings, because i) the loss function capturing user dissatisfaction, e.g., service latency

or reliability, is hard to model in dynamic environments; and, ii) even if modeling is possible in

theory, the low-power IoT devices may not afford the complexity of running statistical learning

tools such as deep neural networks online.

In this context, targeting a gradient-free efficient solution, alternative online schemes have been

advocated leveraging point-wise values of loss functions (partial-information feedback) rather than

their gradients (full-information feedback). They are termed bandit convex optimization (BCO)

in machine learning [52, 3, 143, 22], or referred as zeroth-order schemes in optimization circles

[50, 120]. While [52, 3, 50, 143, 22, 120] employed on BCO with time-invariant constraints

that cannot be violated instantaneously, the long-term effect of such instantaneous violations
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Table 6.1: A summary of related works on OCO/BCO

Reference Benchmark Constraints Feedback
[185, 65, 48] Static Fixed and strict Gradient

[62, 71] Dynamic Fixed and strict Gradient
[117] Static Varying and long-term Gradient

[25, 27] Dynamic Varying and long-term Gradient
[106] Static Fixed and long-term Grad./Fun. value

[52, 3, 50, 120, 143, 22] Static Fixed and strict Function value
This work Dynamic Varying and long-term Function value

was studied in [106], where the focus is still on static regret and time-invariant constraints.

Nevertheless, [52, 3, 50, 143, 22, 120] cannot be implemented without knowing the instantaneous

constraints, and the performance guarantees relative to the best dynamic benchmark have not been

characterized in [52, 3, 50, 143, 22, 120, 106].

6.1.2 Our contributions

Building on full-information precursors [25, 27, 117], the present paper broadens the scope of

BCO to the regime with time-varying constraints, and proposes a class of online algorithms termed

online bandit saddle-point (BanSaP) approaches. Also worth mentioning is that the regret-fit

tradeoff of BanSaP markedly improves that in [27] for the special case with full-information

feedback, and that in [106] for the special case with time-invariant constraints. With an eye on

managing IoT with limited information, our contribution is the incorporation of long-term and

time-varying constraints to expand the scope of BCO; see a summary in Table 6.1.

In a nutshell, relative to existing works, the main contributions of the present paper are

summarized as follows.

c1) We generalize the standard BCO framework with only time-varying costs [52, 3], to

account for both time-varying costs and constraints. Performance here is established relative to the

best dynamic benchmark, via metrics that we term dynamic regret and fit (Section III).

c2) We develop a class of BanSaP algorithms to tackle this novel BCO problem, and analyti-

cally establish that BanSaP solvers yield simultaneously optimal sub-linear dynamic regret and fit,

given that the accumulated variations of per-slot minimizers are known to grow sub-linearly with

time (Section IV).

c3) Our BanSaP algorithms are applied to computation offloading tasks emerging in IoT

management, and simulations under various network sizes further demonstrate that the BanSaP

solvers outperform the popular algorithm with bandit feedback, and have comparable performance
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relative to full-information alternatives (Section V).

Notation. (·)> stands for vector and matrix transposition, and ‖x‖ denotes the `2-norm of a

vector x. Inequalities for vectors x > 0, and the projection [a]+ := max{a,0} are entry-wise.

6.2 Bandit online learning with constraints

In this section, a generic BCO formulation with long-term and time-varying constraints will be

introduced, along with its real-world application in IoT management.

6.2.1 Online learning with constraints under partial feedback

Before introducing BCO with long-term constraints, we begin with the classical BCO setting,

where constraints are time-invariant, and must be strictly satisfied [52, 3, 22]. Akin to its full-

information counterpart [185, 65], BCO can be viewed as a repeated game between a learner and

nature. Consider that time is discrete and indexed by t. Per slot t, a learner selects an action

xt from a convex set X ⊆ Rd, and subsequently nature chooses a loss function ft(·) : Rd → R

through which the learner incurs a loss ft(xt). The convex feasible set X is a-priori known and

fixed over the entire time horizon. Different from the OCO setup, at the end of each slot, only

the value of ft(xt) rather than the form of ft(x) is revealed to the learner in BCO. Although

this standard BCO setting is appealing to various applications such as online end-to-end routing

[8] and task assignment [75], it does not account for potential variations of (possibly unknown)

constraints, and does not deal with constraints that can possibly be satisfied in the long term rather

than a slot-by-slot basis [106, 25, 117].

Online optimization with time-varying and long-term constraints is well motivated for applica-

tions from power control in wireless communication [116], geographical load balancing in cloud

networks [26, 25], to computation offloading in fog computing [135, 37]. Motivated by these

dynamic network management tasks, our recent works [25, 27] studied OCO with time-varying

constraints in full information setting, where the gradient feedback is available. Complementing

[25] and [27], the present paper broadens the applicability of BCO to the regime with time-varying

long-term constraints.

Specifically, we consider that per slot t, a learner selects an action xt from a known and

fixed convex set X ⊆ Rd, and then nature chooses not only a loss function ft(·) : Rd → R, but

also a time-varying penalty function gt(·) : Rd → RN . The later gives rise to the time-varying

constraint gt(xt) ≤ 0, which is driven by the unknown application-specific dynamics. Similar to
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the standard BCO setting, only the value of ft(xt) at the queried point xt is revealed to the learner

here; but different from the standard BCO setting, besides X , the constraint gt(xt) ≤ 0 needs

to be carefully taken care of. And the fact that gt is unknown to the learner when performing

her/his decision, makes it impossible to satisfy in every time slot. Hence, a more realistic goal

here is to find a sequence of solutions {xt} that minimizes the aggregate loss, and ensures that

the constraints {gt(xt) ≤ 0} are satisfied in the long term on average. Specifically, extending

the BCO framework [52, 3, 143] to accommodate such time-varying constraints, we consider the

following online optimization problem

min
{xt∈X ,∀t}

T∑
t=1

ft(xt) s. to
T∑
t=1

gt(xt) ≤ 0 (6.1)

where T is the entire time horizon, xt ∈ Rd is the decision variable, ft represents the cost function,

gt := [g1
t , . . . , g

N
t ]> denotes the constraint function with nth entry gnt (·) : Rd → R, and X ∈ Rd

is a convex set. In the current setting, we assume that only the values of loss function are available

at queried points since e.g., its complete form related to user experience is hard to approximate, but

the constraint function is revealed to the learner as it represents measurable physical requirements

e.g., power budget, and data flow conservation constraints. Before the algorithm development in

Section 6.3 and performance analysis in Section 6.4, we will introduce a motivating example of

fog computing in IoT.

6.2.2 Motivating setup: mobile fog computing in IoT

The online computational offloading task of fog computing in IoT [107, 105, 133] takes the

form of BCO with long-term constraints (6.1). Consider a mobile network with a sensor layer,

a fog layer, and a cloud layer [86, 38]. The sensor layer contains heterogeneous low-power IoT

devices (e.g., wearable watches and smart cameras), which do not have enough computational

capability, and usually offload their collected data to the local fog nodes (e.g., smartphones and

high-tech routers) in the fog layer for further processing [67]. The fog layer consists of N nodes

in the set N := {1, . . . , N} with moderate processing capability; thus, part of workloads will be

collaboratively processed by the local fog servers to meet the stringent latency requirement, and

the rest will be offloaded to the remote data center in the cloud layer [105]; also see Fig. 6.1.

Per time t, each fog node n collects data requests bnt from all its nearby sensors. Once receiving

these requests, node n has three options: i) offloading the amount znt to the remote data center;

ii) offloading the amount ynkt to each of its nearby node k for collaborative computing; and, iii)



139

Healthcare

Smart home

Smart cities

Computation capability Service latency 

Sensor layer Fog layer Cloud layer

Figure 6.1: A diagram of hierarchical fog computing framework.

locally processing the amount ynnt according to its resource availability. The optimization variable

xt in this case consists of the cloud offloading, local offloading, and local processing amounts;

i.e., xt := [z1
t , . . . , z

N
t , y

11
t , . . . , y

1N
t , . . . , yN1

t , . . . , yNNt ]>. Assuming that each fog node has a

data queue to buffer unserved workloads, the instantaneously served workloads (offloading plus

processing) is not necessarily equal to the data arrival rate. Instead, a long-term constraint is

common to ensure that the cumulative amount of served workloads is no less than the arrived

amount at each node n over time [116]

T∑
t=1

gnt (xt) :=

T∑
t=1

(
bnt +

∑
k∈N in

n

yknt −
∑

k∈N out
n

ynkt − znt − ynnt

)
≤ 0 (6.2)

where N in
n and N out

n represent the sets of fog nodes with in-coming links to node n and those

with out-going links from node n, respectively. The bandwidth limit of communication link

(e.g., wireline) from fog node n to the remote cloud is z̄n; the limit of the transmission link

(e.g., wireless) from node n to its neighbor k is ȳnk, and the computation capability of node n

is ȳnn. With x̄ collecting all the aforementioned limits, the feasible region can be expressed by

xt∈X :={0≤xt≤ x̄}.
Performance is assessed by the user dissatisfaction of the online processing and offloading

decisions, e.g., aggregate delay [134, 86]. Specifically, as the computation delay is usually

negligible for data centers with thousands of high-performance servers, the latency for cloud
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offloading amount znt is mainly due to the communication delay, which is denoted as a time-

varying cost cnt (znt ) depending on the unpredictable network congestion during slot t. Likewise,

the communication delay of the local offloading decision ynkt from node n to a nearby node k is

denoted as cnkt (ynkt ), but its magnitude is much lower than that of cloud offloading. Regarding

the processing amount ynnt , its latency comes from the computation delay due to its limited

computational capability, which is presented as a time-varying function hnt (ynnt ) capturing the

dynamic CPU capability during the computing processes. Per slot t, the network delay ft(xt)

aggregates the computation delay at all nodes plus the communication delay at all links, namely

ft(xt) :=
∑
n∈N

(
cnt (znt ) +

∑
k∈N out

n
cnkt (ynkt )︸ ︷︷ ︸

communication

+ hnt (ynnt )︸ ︷︷ ︸
computation

)
. (6.3)

Clearly, the explicit form of functions cnt (·), cnkt (·), and hnt (·) is unknown to the network operator

due to the unpredictable traffic patterns [8]; but they are convex (thus ft(xt) is convex) with

respect to their arguments, which implies that the marginal computation/communication latency is

increasing as the offloading/processing amount grows.

Aiming to minimize the accumulated network delay while serving all the IoT workloads in the

long term, the optimal offloading strategy in this mobile network is the solution of the following

online optimization problem (cf. (6.3))

min
{xt∈X ,∀t}

T∑
t=1

ft(xt), s. to (6.2) for n = 1, . . . , N. (6.4)

Comparing to the generic form (6.1), we consider an online fog computing problem in (6.4), where

the loss (network latency) function ft(·) and the data requests {bnt } within slot t are not known

when making the offloading and local processing decision xt; after performing xt, only the value

of ft(xt) (a.k.a. loss) as well as the measurements {bnt } are revealed to the network operator. In

other words, knowledge of the network operator is fully causal, meaning that before deciding xt at

time t, the operator knows only {fτ (xτ ), {bnτ }}t−1
τ=1. Note that in this example, measuring {bnt } is

tantamount to knowing the function gnt (·) in (6.2). Therefore, (6.4) is in the form of (6.1).

6.3 BanSaP: Bandit saddle-point methods

To solve the problem in Section 6.2, an online saddle-point method is revisited first, before

developing its bandit variants for network optimization with only partial feedback.
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6.3.1 Online saddle-point approach with gradient feedback

Several works have studied the OCO setup with time-varying long-term constraints (cf. (6.1)),

including [25, 117], and the recent variant [27] incorporating with adaptive stepsizes. Consider

now the per-slot problem (6.1), which contains the current objective ft(x), the current constraint

gt(x) ≤ 0, and a time-invariant feasible set X . With λ ∈ RN+ denoting the Lagrange multiplier

associated with the time-varying constraint, the online Lagrangian of (6.1) can be expressed as

Lt(x,λ) := ft(x) + λ>gt(x). (6.5)

Serving as a basis for developing the bandit approaches, we next revisit the online saddle-point

scheme with full-information [117]. Specifically, given the primal iterate xt and the dual iterate

λt at each slot t, the next decision xt+1 is generated by

xt+1∈ arg min
x∈X
∇>xLt(xt,λt)(x− xt) +

1

2α
‖x− xt‖2 (6.6)

where α is a pre-defined constant, and∇xLt(xt,λt) = ∇ft(xt) +∇>gt(xt)λt is the gradient of

Lt(x,λt) with respect to (w.r.t.) the primal variable x at x = xt. The minimization (6.6) admits

the closed-form solution, given by

xt+1 = PX (xt − α∇xLt(xt,λt)) (6.7)

where PX (y) := arg minx∈X ‖x − y‖2 denotes the projection operator. In addition, the dual

update takes the modified online gradient ascent form

λt+1 =
[
λt + µ(gt(xt) +∇>gt(xt)(xt+1 − xt))

]+
(6.8)

where µ is a positive stepsize, [ · ]+ represents projection to the positive orthant, and∇λLt(xt,λt) =

gt(xt) is the gradient of Lt(xt,λ) w.r.t. λ at λ = λt. Note that (6.8) is a modified gradient update

since the dual variable is updated along the first-order approximation of gt(xt+1) at the previous

iterate xt rather than commonly used gt(xt), which will be critical in our subsequent analytical

derivations.

To perform the online saddle-point recursion (6.7)-(6.8) however, the gradient ∇ft(x) and

the constraint gt(x) should be known to the learner at each slot t. When the gradient of ft(x)

(or its explicit form) is unknown as it is in our setup, additional effort is needed. In this context,

the systematic design of the online bandit saddle-point (BanSaP) methods will be leveraged to
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Figure 6.2: A comparison of OCO with full/partial-bandit feedback.

extend the online saddle-point method to the regime where gradient information is unavailable or

computationally costly.

6.3.2 BanSaP with one-point partial feedback

The key idea behind BCO is to construct (possibly stochastic) gradient estimates using the limited

function value information [52, 3, 50, 120, 143]. Depending on system variability, the online

learner can afford one or multiple loss function evaluations (partial-information feedback) per

time slot [120, 3, 50]. Intuitively, the performance of a bandit algorithm will improve if multiple

evaluations are available per time slot; see Fig. 6.2 for a comparison of full- versus partial-

information feedback settings.

To begin with, we consider the case where the learner can only observe the function value of

ft(x) at a single point per slot t. The crux here is to construct a (possibly unbiased) estimate of the

gradient using this single piece of feedback. Interestingly though, a stochastic gradient estimate of

ft(x) can be obtained by one point random function evaluation [52]. The intuition can be readily

revealed from the one-dimensional case (d = 1): For a binary random variable u taking values

{−1, 1} equiprobable, and a small constant δ > 0, the idea of forward differentiation implies that

the derivative f ′t at x can be approximated by

f ′t(x) ≈ ft(x+ δ)− ft(x− δ)
2δ

= Eu
[u
δ
ft(x+ δu)

]
(6.9)
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where the approximation is due to δ > 0, and the equality follows from the definition of expectation.

Hence, ft(x + δu)u/δ can serve as a stochastic estimator of f ′t(x) based only single function

evaluation ft(x+ δu). Generalizing this approximation to high dimensions, with a random vector

u drawn from the unit sphere (a.k.a. the surface of a unit ball), the scaled function evaluation at a

perturbed point x + δu yields an estimate of the gradient∇ft(x), given by [52]

∇ft(x) ≈ Eu

[
d

δ
ft(x + δu)u

]
:= Eu

[
∇̂1ft(x)

]
(6.10)

where we define one-point gradient ∇̂1ft(x) := d
δ ft(x + δu)u.

Building upon this intuition, consider a bandit version of the online saddle-point iteration, for

which the primal update becomes (cf. (6.7))

x̂t+1 = P(1−γ)X

(
x̂t − α∇̂1

xLt(x̂t,λt)
)

(6.11)

where (1 − γ)X := {(1 − γ)x : x ∈ X} is a subset of X , γ ∈ [0, 1) is a pre-selected constant

depending on δ, and the one-point Langragian gradient is given by (cf. (6.10))

∇̂1
xLt(x̂t,λt) := ∇̂1ft(x̂t) +∇>gt(x̂t)λt. (6.12)

In the full-information case, xt in (6.7) is the learner’s action, but in the bandit case the learner’s

action is x1,t := x̂t + δut, which is the point for function evaluation but not x̂t in (6.11). Note

that while the random perturbation ut is assumed to lie on the surface of a unit ball, we do not

confine the actual IoT decision xt to follow any specific distribution.

Furthermore, the projection is performed on a smaller convex set (1− γ)X in (6.11), which

ensures feasibility of the perturbed x1,t ∈ X . Similar to the full-information case (6.8), the dual

update of BanSaP is given by

λt+1 =
[
λt + µ(gt(x̂t) +∇>gt(x̂t)(x̂t+1 − x̂t))

]+
(6.13)

where µ is again the stepsize, and the learning iterate x̂t rather than the actual decision xt is used

in this update. Compared with the gradient-based recursions (6.7)-(6.8), the updates (6.11)-(6.13)

with one-point bandit feedback do not increase computation or memory requirements, and thus

provide a light-weight surrogate for gradient-free online bandit network optimization.
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Algorithm 8 BanSaP for OCO with time-varying constraints

1: Initialize: primal iterate x̂1, dual iterate λ1, parameters δ and γ, and stepsizes α and µ.
2: for t = 1, 2 . . . do
3: The learner plays the perturbed actions {xm,t}Mm=1 based on the learning iterate x̂t.
4: The nature reveals the losses {ft(xm,t)}Mm=1 at queried points, and the constraint gt(x).
5: The learner updates the primal variable x̂t+1 by (6.11) with the gradient estimated by

(6.12) for M = 1, or, (6.15) for M = 2, otherwise, by (6.17).
6: The learner updates the dual variable λt+1 via (6.13).
7: end for

6.3.3 BanSaP with multipoint partial feedback

Featuring a simple update given minimal information, the BanSaP with one-point bandit feedback

is suitable for fast-varying environments, where multiple function evaluations are impossible. As

shown later in Sections 6.4 and 6.5, the theoretical and empirical performance of BanSaP with

single-point evaluation is degraded relative to the full-information case.

To improve the performance of BanSaP with one-point feedback, we will first rely on two-point

function evaluation at each slot [50], and then generalize to multipoint evaluation. Intuitively,

this approach is justified when the underlying dynamics are slow, e.g., when the load and price

profiles in power grids are piece-wise stationary. In this case, each slot can be further divided into

multiple mini-slots, and one query is performed per mini-slot, over which the loss function and

the constraints do not change. Compared to (6.11)-(6.13), the key difference is that the one-point

estimate in (6.12) is replaced by

∇̂2ft(x̂t) :=
d

2δ

(
ft(x̂t + δut)− ft(x̂t − δut)

)
ut (6.14)

where the function values are evaluated on two points around the learning iterate x̂t, namely,

x1,t := x̂t + δut and x2,t := x̂t − δut with ut again drawn uniformly from the unit sphere

S := {u ∈ Rd : ‖u‖ = 1}. The primal update becomes x̂t+1 = P(1−γ)X
(
x̂t − α∇̂2

xLt(x̂t,λt)
)
,

with Lagrangian gradient

∇̂2
xLt(x̂t,λt) := ∇̂2ft(x̂t) +∇>gt(x̂t)λt. (6.15)

Similar to the one-point case, it is instructive to consider the two-point gradient estimate in

the one-dimensional case (d = 1), where the expectation of the differentiation term in (6.14)
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approximates well the derivative of ft at x̂t; that is,

Eu
[ut

2δ
(ft(x̂t + δut)− ft(x̂t − δut))

]
=

1

2δ
(ft(x̂t + δ)− ft(x̂t − δ)) ≈ f ′t(x̂t) (6.16)

where the equality follows because the random variable ut takes values {−1, 1} equiprobable.

Relative to the one-point feedback case, the advantage of the two-point feedback is variance

reduction in the gradient estimator. Specifically, the second moment of the stochastic gradient

can be uniformly bounded, E[‖ d2δ
(
ft(x̂t + δut) − ft(x̂t − δut)

)
ut‖2] ≤ d2G2, where G is the

Lipschitz constant of ft(x). This is in contrast to the one-point feedback where the second moment

is inversely proportional to δ, since E[dδ ‖ft(x̂t + δut)ut‖2] ≤ d2F 2/δ2, with F denoting an

upper-bound of ft(x). The proof of this argument can be found in the [33, Lemma 2]. In fact, a

bias-variance tradeoff emerges in the one-point case, but not in the two-point case. This subtle

yet critical difference will be responsible for an improved performance of BanSaP with two-point

feedback, and its stable empirical performance, as will be seen later.

With the insights gained so far, the next step is to endow the BanSaP with more than two

function evaluations [3]. With M > 2 points, the gradient estimator is obtained by querying

the function values over M points in the neighborhood of x̂t. These points include xm,t :=

x̂t+ δum,t, 1≤m≤M − 1, and the learning iterate xm,t := x̂t, where um,t is independently

drawn from S. Specifically, the gradient becomes (cf. (6.11))

∇̂Mx Lt(x̂t,λt) :=
d

δ(M − 1)

M−1∑
m=1

(
ft(x̂t+δum,t)−ft(x̂t)

)
um,t +∇>gt(x̂t)λt (6.17)

where we define the M -point stochastic gradient as ∇̂Mft(x̂t) := d
δ(M−1)

∑M−1
m=1

(
ft(x̂t+δum,t)−

ft(x̂t)
)
um,t. At the price of extra computations, simulations will validate that the BanSaP with

multipoint feedback enjoys improved performance. The family of the BanSaP approaches with

one- or multiple-point feedback is summarized in Algorithm 8.

Remark 9 (Sampling schemes). The BanSaP solvers here adopt uniform sampling for gradient

estimation, meaning u is drawn uniformly from the unit sphere. However, other sampling rules

can be incorporated without affecting the order of regret bounds derived later. For example, one

can sample u from the canonical basis of a d-dimensional space uniformly at random [3], or,

sample u from a normal distribution [120]. The effectiveness of these schemes will be tested using

simulations.
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6.4 Performance analysis

In this section, we will introduce pertinent metrics to evaluate BanSaP algorithms in the online

bandit learning with long-term constraints, and rigorously analyze the performance of the proposed

algorithms.

6.4.1 Optimality and feasibility metrics

With regard to performance of BCO schemes, static regret is a common metric, under time-

invariant and strictly satisfied constraints, which measures the difference between the aggregate

loss and that of the best fixed solution in hindsight [3, 52]. Extending the definition of static regret

to accommodate M -point function evaluations and time-varying constraints, let us first consider

Regs
T :=

1

M

T∑
t=1

M∑
m=1

E [ft(xm,t)]−
T∑
t=1

ft(x
∗) (6.18)

where the actual loss per slot is averaged over the losses of M actions (queried points), E is taken

over the sequence of the random actions xm,t with randomness induced by {um,t} perturbations,

and the best static solution is x∗ ∈ arg minx∈X
∑T

t=1 ft(x); s. to gt(x) ≤ 0, ∀t. A BCO

algorithm yielding a sub-linear regret implies that the algorithm is “on average” no-regret [106];

or, in other words, asymptotically not worse than the best fixed solution x∗. Though widely used,

the static regret relies on a rather coarse benchmark, which is not as useful in dynamic IoT settings.

Specifically, the gap between the loss of the best static and that of the best dynamic benchmark is

as large as O(T ) [15].

In response to the quest for improved benchmarks in this dynamic setup with constraints, two

metrics are considered here: dynamic regret and dynamic fit. The notion of dynamic regret has

been recently adopted in [71, 62] to assess performance of online algorithms under time-invariant

constraints. For our BCO setting of (6.1), we adopt

Regd
T :=

1

M

T∑
t=1

M∑
m=1

E [ft(xm,t)]−
T∑
t=1

ft(x
∗
t ) (6.19)

where E is again taken over the sequence of random actions, and the benchmark is now formed

via a sequence of best dynamic solutions {x∗t } for the instantaneous cost minimization problem
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subject to the instantaneous constraint, namely

x∗t ∈ arg min
x∈X

ft(x) s. to gt(x) ≤ 0. (6.20)

Comparing (6.19) with (6.18), if x∗t = x∗, ∀t, then the static regret is equivalent to the dynamic

regret. In general, the dynamic regret is larger than the static regret, i.e., Regs
T ≤ Regd

T , since∑T
t=1 ft(x

∗) is always no smaller than
∑T

t=1 ft(x
∗
t ) according to the definitions of x∗ and x∗t .

Hence, a sub-linear dynamic regret implies a sub-linear static regret, but not vice versa.

Regarding feasibility of decisions generated by a BCO algorithm, the notion of dynamic fit

will be used to measure the accumulated violation of constraints [106], that is

Fitd
T :=

∥∥∥∥∥
[

1

M

T∑
t=1

M∑
m=1

gt(xm,t)

]+∥∥∥∥∥. (6.21)

Note that the dynamic fit is zero if the accumulated violation 1
M

∑T
t=1

∑M
m=1 gt(xm,t) is entry-

wise less than zero. Hence, enforcing 1
M

∑T
t=1

∑M
m=1 gt(xm,t)≤0 is different from restricting xt

to meet 1
M

∑M
m=1 gt(xm,t) ≤ 0 in every slot. While the latter implies the former, the long-term

constraint implicitly assumes that the instantaneous constraint violations can be compensated by

the later strictly feasible decisions.

Under this broader BCO setup, an ideal online algorithm is the one that achieves both sub-

linear dynamic regret and sub-linear dynamic fit. A sub-linear dynamic regret implies “no-regret”

relative to the clairvoyant dynamic solution on the long-term average; i.e., limT→∞Regd
T /T = 0;

and a sub-linear dynamic fit indicates that the online strategy is also feasible on average; i.e.,

limT→∞ Fitd
T /T = 0. Unfortunately, the sub-linear dynamic regret is not achievable under

arbitrary underlying dynamics, even when the time-varying constraint in (6.1) is absent [15].

Therefore, we aim at designing an online strategy that generates a sequence {xm,t} ensuring

sub-linear dynamic regret and fit, under the suitable regularity conditions on the underlying

dynamics.

6.4.2 Main results

Before formally analyzing the dynamic regret and fit for BanSaP, we assume that the following

conditions are satisfied.

(as1) For every t, the functions ft(x) and gt(x) are convex.

(as2) Function ft(x) is bounded over the set X , meaning |ft(x)| ≤ F, ∀x ∈ X ; while ft(x) and

gnt (x) have bounded gradients; that is, ‖∇ft(x)‖ ≤ G, and maxn ‖∇gnt (x)‖ ≤ G.
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(as3) For a small constant γ, there exists a constant η > 0, and an interior point x̃ ∈ (1− γ)X
such that gt(x̃) ≤ −η1, ∀t.
(as4) With B :={x ∈ Rd : ‖x‖ ≤ 1} denoting the unit ball, there exist constants 0 < r ≤ R such

that rB ⊆ X ⊆ RB.

Assumptions (as1)-(as2) are typical in OCO with both full- and partial-information feedback

[65, 106, 52]; (as3) is Slater’s condition modified for our BCO setting, which guarantees the

existence of a bounded Lagrange multiplier [13] in the constrained optimization; and, (as4)

requires the action set to be bounded within a ball that contains the origin. When (as4) appears to

be restrictive, it is tantamount to assuming X is compact and has a nonempty interior, because one

can always apply an affine transformation (a.k.a. reshaping) on X to satisfy (as4); see [52, Section

3.2].

Under these assumptions, we are on track to first provide upper bounds for the dynamic regret,

and the dynamic fit of the BanSaP solver with one-point feedback.

Theorem 11 (one-point feedback). Suppose that (as1)-(as4) are satisfied, and consider the

parameters α, µ, δ, γ defined in (6.11)-(6.13), and constants F , G, r, R defined in (as2)-(as4). If

the dual variable is initialized by λ1 = 0, then the BanSaP with one-point feedback in (6.7)-(6.8)

has dynamic regret bounded by

Regd
T ≤

R

α
V (x∗1:T ) +

R2

2α
+
d2G2R2αT

δ2
+2GδT + γGRT

(
1 + ‖λ̄‖

)
+2µG2R2T (6.22)

where ‖λ̄‖ := maxt ‖λt‖, and the accumulated variation of the per-slot minimizers x∗t in (6.20)

is given by

V (x∗1:T ) :=
T∑
t=1

‖x∗t − x∗t−1‖. (6.23)

In addition, the dynamic fit defined in (6.21) is bounded by

Fitd
T ≤
‖λ̄‖
µ

+
G2
√
NT

2β
+δG

√
NT +β

√
NT

(
α2d2F 2

δ2
+α2G2‖λ̄‖2

)
(6.24)

where β > 0 is a pre-selected constant. Furthermore, if we choose the stepsizes as α = µ =

O(T−
3
4 ), and the parameters δ = O(T−

1
4 ), β = T

1
4 and γ = δ/r, then the online decisions

generated by BanSaP are feasible, i.e., x1,t ∈ X ; and also yield the following dynamic regret and

fit

Regd
T =O

(
V (x∗1:T )T

3
4

)
and Fitd

T = O
(
T

3
4
)
. (6.25)
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For BanSaP with one-point feedback, Theorem 11 asserts that its dynamic regret and fit are

upper-bounded by some constants depending on the those parameters, the time horizon, and the

accumulated variation of per-slot minimizers. Interestingly, the crucial constant δ controlling the

perturbation of random actions appears in both the denominator and numerator of (6.22) and (6.24),

which correspond to the variance and bias of the gradient estimator. Therefore, simply setting a

small δ will not only reduce the bias, but it will also boost the variance - a clear manifestation of

the that is known as bias-variance tradeoff in BCO [143]. Optimally choosing parameters implies

that the dynamic fit is sub-linearly growing, and the dynamic regret is sub-linear given that the

variation of the per-slot minimizer is slow enough; i.e., V (x∗1:T ) = o(T
1
4 ).

Regarding BanSaP with two-point feedback, we can prove the following result that parallels

Theorem 11.

Theorem 12 (two-point feedback). Consider the assumptions and the definitions of constants in

Theorem 11. If the dual variable is initialized by λ1 = 0, then BanSaP with two-point feedback

has dynamic regret bounded by

Regd
T ≤

R

α
V (x∗1:T ) +

R2

2α
+2µG2R2T+αd2G2T +γGRT (1 + ‖λ̄‖)+2δGT (6.26)

and has dynamic fit in (6.21) bounded by

Fitd
T ≤
‖λ̄‖
µ

+
G2
√
NT

2β
+δG

√
NT +β

√
NT

(
α2d2G2+α2G2‖λ̄‖2

)
. (6.27)

In this case, if we choose the stepsizes as α = µ = O(T−
1
2 ), and set the parameters as β = T

1
2 ,

δ = O(T−1), and γ = δ/r, then the online decisions generated by BanSaP are feasible, and its

dynamic regret and fit are bounded by

Regd
T =O

(
V (x∗1:T )T

1
2

)
and Fitd

T = O
(
T

1
2
)

(6.28)

where V (x∗1:T ) is the accumulated variation of the per-slot minimizers x∗t in (6.23).

Comparing with the bounds in (6.22) and (6.24), the perturbation constant δ only appears

in the numerator of (6.26) and (6.27) because our gradient estimator here replies on two points.

In this case, the additional function evaluation allows BanSaP to choose an arbitrarily small δ

to minimize the bias of stochastic gradient, without increasing its variance. This observation is

aligned with those in BCO without long-term constraints [3, 143]. Furthermore, Theorem 12
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establishes that the dynamic regret and fit are sub-linear if V (x∗1:T ) = o(T
1
2 ), which markedly

improves those in Theorem 11 under one-point feedback.

For the case of BanSaP with M > 2 points, slightly improved bounds can be proved without

changing the order of regret and fit, but they are omitted here for brevity. In addition, the bounds

in Theorems 11 and 12 can be achieved without any knowledge of V (x∗1:T ). When the order of

V (x∗1:T ) is known, or, can be estimated a-priori, tighter regret and fit bounds can be obtained by

adjusting stepsizes accordingly. Formally, we can arrive at the following corollary.

Corollary 2. Under the conditions of Theorems 11 and 12, suppose that there exists a constant

ρ ∈ [0, 1) such that the variation satisfies V (x∗1:T ) = o(T ρ). If the stepsizes of BanSaP with

one-point feedback are chosen as α = µ = O
(
T

3
4

(ρ−1)
)
, and the parameters are δ = O(T

1
4

(ρ−1)),

β = T
3
4

(1−ρ), and γ = δ/r, then the dynamic regret and fit in (6.25) become

Regd
T =O

(
T

1
4

(ρ+3)
)

and Fitd
T = O

(
T

1
4

(ρ+3)
)
. (6.29)

Likewise, if the stepsizes of BanSaP with two-point feedback are chosen such that α = µ =

O
(
T

1
2

(ρ−1)
)
, and the parameters are δ = O(T

1
2

(ρ−1)), β = T
1
2

(1−ρ), and γ = δ/r, then the

dynamic regret and fit in (6.25) become

Regd
T =O

(
T

1
2

(ρ+1)
)

and Fitd
T = O

(
T

1
2

(ρ+1)
)
. (6.30)

Apparently, Corollary 2 implies that sub-linear dynamic regret and fit are both possible,

provided that the accumulated variation of the minimizers is growing sub-linearly (ρ < 1), and it is

available to the learner in advance. It provides valuable insights for choosing optimal stepsizes in

dynamic environments. Specifically, adjusting stepsizes to match the variability of the environment

is the key to achieving the optimal dynamic regret and fit. Intuitively, when the variation is fast

(large ρ), slowly decaying stepsizes (thus larger stepsizes) can better track the potential changes;

and vice versa.

Remark 10 (Optimal regret). As a special case of Theorems 11 and 12, by confining x∗1 = · · · = x∗T

so that V (x∗1:T ) = 0, the dynamic regret bounds (6.25) and (6.28) reduce to the static ones, which

correspond to O(T
3
4 ) in the one-point feedback case, and to O(

√
T ) in the two-point case.

This pair of bounds markedly improves the regret versus fit tradeoff in [106], and matches the

order of regret in [52], and [3, 50], which are the best possible ones that can be achieved by

efficient algorithms even in the BCO setup without the long-term constraints. Considering the

full-information setting in [27] as a special case, the regret and fit of BanSaP outperform those in
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Algorithm 9 BanSaP for edge computing

1: Initialize: primal iterates {ŷnk1 } and {ẑn1 }, dual iterate λ1, parameters δ and γ, and proper
stepsizes α and µ.

2: for t = 1, 2 . . . do
3: for m = 1, . . . ,M do
4: Fog nodes perform perturbed offloading decisions to cloud {znm,t}, to neighbor edges
{ynkm,t}, and locally process {ynnm,t} based on x̂t.

5: end for
6: Fog nodes observe the (possibly multiple) losses to update (6.31) with stochastic gradients

obtained via (6.32).
7: Fog nodes observe the actual demands from devices to update the dual variables (6.33).
8: end for

[27].

Remark 11 (Dynamic regret). Theorems 11, 12 and Corollary 2 extend the dynamic regret analysis

in [62, 71, 25] to the regime of bandit online learning with long-term time-varying constraints.

Interestingly though, in the BCO setting of our interest, sub-linear dynamic regret and fit are

possible to achieve when the per-slot minimizer does not vary on average, that is, V (x∗1:T ) is

sub-linearly growing with T .

6.5 Numerical tests

In this section, we demonstrate how the edge computing task can benefit from BanSaP.

6.5.1 BanSaP for edge computing

Recall that the computation offloading problem (6.4) is in the form of (6.1). Therefore, the

BanSaP solver of Section 6.3 can be customized to solve (6.4) in an online fashion, with provable

performance and feasibility guarantees.

Specifically, with gt(xt) as in (6.2) and ft(xt) as in (6.3), the primal update (6.7) boils down

to a simple closed-form gradient update amenable to decentralized implementation; the cloud

offloading amount at node n is

ẑnt+1 =
[
ẑnt − α

(
∇̂cnt (ẑnt )− λnt

)]z̄n
0

(6.31a)

and the offloading amount from node n to node k is given by

ŷnkt+1 =
[
ŷnkt −α

(
∇̂cnkt (ŷnkt )− λnt + λkt

)]ȳnk
0

(6.31b)
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while the local processing decision at node n is generated by

ŷnnt+1 =
[
ŷnnt − α

(
∇̂hnt (ŷnnt )− λnt

)]ȳnn
0

(6.31c)

where α is chosen according to Theorems 11 and 12. Using two-point feedback (M = 2) as an

example, the gradients involved in (6.31) can be estimated as

∇̂2cnt (ẑnt ) :=
d

2δ

(
ft
(
x̂t + δut︸ ︷︷ ︸

x1,t

)− ft(x̂t − δut︸ ︷︷ ︸
x2,t

))
ut(ẑ

n) (6.32a)

and with respect to the offloading variable, as

∇̂2cnkt (ŷnkt ) :=
d

2δ

(
ft(x̂t + δut)− ft(x̂t − δut)

)
ut(ŷ

nk) (6.32b)

and with respect to the local processing variable, as

∇̂2hnt (ŷnnt ) :=
d

2δ

(
ft(x̂t + δut)− ft(x̂t − δut)

)
ut(ŷ

nn) (6.32c)

where ut(ẑn), ut(ŷnk), and ut(ŷnn) represent the corresponding entries of the random vector

ut ∈ R|E| at slot t.

The dual update (6.8) at each node n reduces to

λnt+1 =

[
λnt + µ

(
bnt +

∑
k∈N in

n

ŷknt+1 −
∑

k∈N out
n

ŷnkt+1− ẑnt+1− ŷnnt+1

)]+

(6.33)

where µ is chosen according to Theorems 11 and 12. Intuitively, to guarantee completion of

the service requests, the dual variable increases (increasing penalty) when there is instantaneous

service residual, and decreases when over-serving incurs in the mobile-edge computing systems.

Following its generic form in Algorithm 8, BanSaP for online edge computing tasks, is summarized

in Algorithm 9.

6.5.2 Numerical experiments

Consider the fog computing task in a smart home setting with N = 10 fog nodes (e.g., smart

home gateways), and a remote cloud center [184]. Each fog node has an outgoing link to the

cloud, and two outgoing links to two nearby fog nodes for local collaborative computing. For a

communication link offloading loads from fog node n to k, we consider the low-power wireless
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Figure 6.3: Effect of sampling schemes and number of feedback on dynamic fit. Solid lines:
BanSaP with uniformly sampling from a unit sphere (uniform sampling). Dashed lines: BanSaP
with randomly sampling from standard basis (coordinate sampling).

connection such as Bluetooth or ZigBee [134], whose the offloading limit is ȳnk=10; and for all

the fog-cloud offloading communication links, we consider the high-bandwidth WiFi connection

with the offloading limits {z̄n} being 100. For each fog node n, the local computation limit is

assumed to be ȳnn=50. Regarding communication and computation latency, a linear function is

employed to model the communication latency between fog nodes under a constant transmission

rate; a quadratic function is adopted for the local computation latency to account for the potential

queueing time due to other active services in the fog node; and an exponential function is assumed

for the fog-cloud communication latency to characterize the unpredictable network latency due to

involved wide-area routing through the Internet backbone [181]. Therefore, the online cost (a.k.a.

aggregate service latency) in (6.3) is specified by

ft(xt) :=
∑
n∈N

(
ep
n
t z
n
t +
∑

k∈N out
n

lnkynkt + lnn(ynnt )2
)

(6.34)

where pnt = 0.015 sin(πt/96) + 0.05, n∈N\{4, 5}, pnt = 0.045 sin(πt/96) + 0.15, n∈{4, 5},
and the local coefficients are set to lnk = 8/ȳnk and lnn = 8/ȳnn. Regarding the data arrival rate

bnt , it is generated according to bnt =qn sin(πt/96)+νnt , with qn and νnt uniformly distributed over

[40, 50] and [45, 55] for n∈N\{1, 2, 3}⋃{4, 5}, and qn ∈ [32, 40], νnt ∈ [36, 44], n∈{1, 2, 3},
and qn∈ [20, 25], νnt ∈ [22.5, 27.5], n∈{4, 5}. Notice that the periods of pnt and bnt correspond to

a 24-hour interval, following the periodic patterns of human activities in a home sensor network

[102]; while the scales of pnt and bnt vary between nodes, mimicking heterogeneity of IoT sensors

such as motion sensors and thermostat sensors [2]. It is also worth mentioning that our BanSaP
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Figure 6.4: Effect of sampling schemes and number of feedback on average cost. Solid lines:
BanSaP with sampling from a unit sphere (uniform sampling). Dashed lines: BanSaP with
randomly sampling from standard basis (coordinate sampling).

algorithm and its performance analysis are model-free, which means they can incorporate more

complex models so long as the loss function is convex and its point-wise value can be evaluated.

Finally, BanSaP is benchmarked by: i) the full-information modified online saddle-point

method (MOSP) in [25] that takes gradient-based update for primal-dual variables; ii) the heuristic

cloud-only approach that offloads all data requests to the remote cloud; iii) the heuristic fog-only

approach that processes all data requests locally without collaboration; and, iv) the partial-

information perturbed online primal-dual method in [106]. For both cloud-only and fog-only

approaches, unoffloaded and unprocessed requests are buffered at the fog nodes for later processing;

thus, these amounts are measured by their fit. Regarding the perturbed primal-dual method in

[106], it comes with two-point bandit feedback, and the perturbation constant is chosen as 0.06

to satisfy the technical conditions therein. As different stepsizes of BanSaP and MOSP lead to

different behaviors, we manually optimized stepsizes in each test so that they have similar fit, and

focus on their cost comparison. When the parameters of BanSaP need to be slightly adjusted in

each test, they are set to γ = 0.05, and δ = 4 for with M = 1, and δ = 0.05 for M ≥ 2. All tests

were averaged over 500 Monte Carlo realizations.

Effect of complexity and sampling schemes. In a simplified setting with N = 5 nodes, the fit

and average cost are compared among the BanSaP variants with M -point feedback under different

sampling schemes in Figs. 6.3 and 6.4. Clearly, for both sampling schemes, the cost and fit of

BanSaP solvers decrease as the amount of bandit feedback increases. However, such performance

gain varnishes when feedback increases; e.g., M ≥ 4. Regarding the sampling schemes, Fig. 6.3

demonstrates that when all the BanSaP variants have low dynamic fit, the uniform sampling-based
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Figure 6.5: Comparison based on dynamic fit.
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Figure 6.6: Comparison of average costs. The shaded region represents the cost distribution of
each scheme within one standard deviation of the mean.

BanSaP with one-point feedback has large initial fit; and Fig. 6.4 confirms that for M = 1, the

coordinate sampling-based BanSaP outperforms that with uniform sampling; and, for M ≥ 2,

the BanSaP solvers with uniform sampling incur lower cost. Therefore, to optimize empirical

performance in the subsequent tests, coordinate sampling is adopted by BanSaP with M = 1,

while uniform sampling is used in BanSaP with M ≥ 2.

Optimality and feasibility. With optimized sampling schemes for BanSaP solvers, the dynamic

fit and average cost are then compared among three BanSaP variants, MOSP, the perturbed primal-

dual method in [106], and two heuristic schemes in Figs. 6.5 and 6.6. Without queueing at the fog

side, the cloud-only scheme has much lower dynamic fit since all user demands are offloaded to

the remote cloud. However, it incurs a much higher average cost (service latency) as the network
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Figure 6.7: Impact of network size on dynamic fit per fog node.
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Figure 6.8: Impact of network size on average network cost.

latency between fog and cloud becomes high due to the large offloading amount. By increasing

the amount of feedback, the BanSaP solver tends to have a lower fit and a lower average cost, both

of which are comparable to those of MOSP when M ≥ 2. On the other hand, the BanSaP with

only one-point bandit feedback still has a similar fit relative to the fog-only scheme, but enjoys

much lower cost. Interestingly enough, when the variance (cf. the shaded area in Fig. 6.6) of the

one-point BanSaP’s cost is high, it markedly varnishes when multiple function values become

available, which corroborates our claims in Theorems 11-12. For the perturbed method in [106],

while its average cost is similar or slightly better than that of BanSaP, its dynamic fit is much

higher than all BanSaP variants, which is aligned with its O(T
3
4 ) fit (cf. O(T

1
2 ) in our case).

Effect of network size. The third test evaluates the performance of all schemes under different

number of fog nodes (i.e., network size). For each algorithm, the fit averaged over all fog nodes
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and time is presented in Fig. 6.7, and the cost averaged over the time is shown in Fig. 6.8. Clearly,

the one-point BanSaP has lower average fit than the fog-only approach in most scenarios, and

also incurs less average cost in all tested settings. Similar to those in Figs. 6.5 and 6.6, the

average fit and cost of BanSaP with multiple function evaluations is still comparable to that of the

full-information MOSP as the network size grows. On the other hand, the method in [106] enjoys

slightly lower average cost as the network size grows, but its dynamic fit is again much higher than

all BanSaP variants. An interesting observation here is that as the number of fog nodes increases,

the performance gain of the BanSaP solver with a large M becomes more evident; see e.g., Fig.

6.8. This implies that for a larger network, BanSaP benefits from more bandit information to learn

and track the network dynamics.

6.6 Proofs of lemmas and theorems

6.6.1 Bias and variance of gradient estimators

Before proving the main theory, we first establish several lemmas related to the quality of gradient

estimators, which later will serve to certify our primal and dual updates. The following lemma

establishes unbiasedness of one- and two-point estimations [52, 3].

Lemma 20 (Unbiasedness of gradient estimators). With u drawn uniformly from the surface of

the unit ball S := {u : ‖u‖ = 1} ⊆ Rd, we have for given a constant δ > 0 that

Eu

[
d

δ
ft(x + δu)u

]
= ∇f̌t(x) (6.35)

where ∇f̌t(x) is the gradient of the smoothed function f̌t(x) := Ev[ft(x + δv)] with v drawn

from a unit ball B, and d is the dimension of x. Likewise, for the two-point case, we have that

Eu

[
d

2δ

(
ft(x + δu)− ft(x− δu)

)
u

]
= ∇f̌t(x). (6.36)

Lemma 20 provides valuable insights for performing gradient-based algorithms in bandit

setting. Namely, ∇̂1ft(x̂t) and ∇̂2ft(x̂t) are the unbiased gradient estimators of the smoothed

function f̌t(x), which is an approximation of ft(x).

The following lemma establishes the norm (or variance) of one- and two-point gradient

estimations [52, 3].
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Lemma 21 (Norm of gradient estimators). For the gradient ∇̂1ft(x̂t) in (6.12), we have that

‖∇̂1ft(x̂t)‖ ≤
d

δ
F (6.37)

where F is an upper-bound of the function. For the gradient estimator ∇̂2ft(x̂t) in (6.15), we

have that

‖∇̂2ft(x̂t)‖ ≤ dG (6.38)

where G is the Lipschitz constant of the loss function.

Having bounded the norm of stochastic gradients, the next lemma is useful to ensure feasibility

of actual online actions.

Lemma 22 ([52, Observation 2]). Consider a constant r > 0 so that rB ⊆ X , where B := {v :

‖v‖ ≤ 1} ⊆ Rd is the unit ball. If we choose γ = δ/r, and the iterate satisfies x̂t ∈ (1 − γ)X ,

then x̂t + δut ∈ X , where ut is drawn uniformly from the unit sphere S := {u : ‖u‖ = 1} ⊆ Rd.

Specifically, Lemma 22 asserts that if the perturbation constant γ is sufficiently small, the

actually perturbed IoT actions {xt} generated by BanSaP are feasible w.r.t. X .

6.6.2 Relating regret and fit to primal and dual drift

The next lemma is crucial to establish the dynamic fit [117].

Lemma 23 (Approximate constraint violation). Considering the BanSaP recursion, we have the

following bound for the constraint violation

T∑
t=1

gt(x̂t) ≤
λT+1

µ
+
G2T1

2β
+
β

2

T∑
t=1

‖x̂t+1 − x̂t‖21 (6.39)

where µ > 0 is the stepsize of the dual iteration (6.8), and β > 0 is a pre-defined constant.

Complex as it may appear, the implication of Lemma 23 is that the dynamic fit in (6.21) will

depend on the norm of dual variables as well as the variation of consecutive primal iterates.

Analogous to Lemma 23, the next lemma serves as an intermediate step to establish the

dynamic regret.
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Lemma 24 (Approximate per-slot regret). Consider the BanSaP algorithm with a generic gradient

∇̂ft(x̂t), which is estimated from one- or multi-point feedback. With ∆(λt) := 1
2(‖λt+1‖2−‖λt‖2),

it holds for ∀x ∈ (1− γ)X that

E[f̌t(x̂t)]− f̌t(x) ≤− 1

µ
E[∆(λt)] + E[λ>t gt(x)] +2µG2R2

+
1

2α
E[‖x−x̂t‖2]− 1

2α
E[‖x−x̂t+1‖2]+α‖∇̂ft(x̂t)‖2 (6.40)

where the constants G, R and F are as in (as2) and (as3).

Proof: Taking the norm square in (6.13), we have

‖λt+1‖2 ≤ ‖λt‖2 + 2µλ>t (gt(x̂t) +∇>gt(x̂t)(x̂t+1 − x̂t))

+2µ2‖gt(x̂t)‖2+2µ2‖∇>gt(x̂t)(x̂t+1−x̂t)‖2. (6.41)

With ∆(λt) := 1
2(‖λt+1‖2−‖λt‖2), (6.41) implies that

1

µ
∆(λt)≤λ>t(gt(x̂t)+∇>gt(x̂t)(x̂t+1−x̂t))+2µG2R2. (6.42)

On the other hand, recall that the primal iterate x̂t+1 is the optimal solution to the following

optimization problem

x̂t+1 =arg min
x∈(1−γ)X

∇̂>xLt(x̂t,λt)(x− x̂t) +
1

2α
‖x− x̂t‖2 . (6.43)

Recalling the definition of ∇̂xLt(x̂t,λt), we thus have that

x̂t+1 = arg min
x∈(1−γ)X

∇̂>ft(x̂t)(x− x̂t) + λ>t (gt(x̂t)+∇>gt(x̂t)(x− x̂t)) +
1

2α
‖x− x̂t‖2

(6.44)

where we add λ>t gt(xt) to the RHS of (6.43). the minimizer of (6.43) does not change, since the

added term is constant.

To connect (6.42) with (6.44), adding ∇̂>ft(x̂t)(x̂t+1 − x̂t)+
1

2α ‖x̂t+1 − x̂t‖2 to the RHS of

(6.42), we have that

1

µ
∆(λt)+∇̂>ft(x̂t)(x̂t+1 − x̂t)+

1

2α
‖x̂t+1−x̂t‖2
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≤λ>t
(
gt(x̂t)+∇>gt(x̂t)(x̂t+1−x̂t)

)
+

1

2α
‖x̂t+1 − x̂t‖2

+ ∇̂>ft(x̂t) (x̂t+1 − x̂t)+2µG2R2. (6.45)

Note that x̂t+1 is the minimizer of (6.44), where the objective on the RHS of (6.44) is strongly-

convex, thus we have that

1

µ
∆(λt) + ∇̂>ft(x̂t)(x̂t+1−x̂t)+

1

2α
‖x̂t+1−x̂t‖2

≤λ>t
(
gt(x̂t)+∇>gt(x̂t)(x−x̂t)

)
+

1

2α
‖x− x̂t‖2+2µG2R2

+ ∇̂>ft(x̂t)(x− x̂t)−
1

2α
‖x− x̂t+1‖2

≤λ>t gt(x) + ∇̂>ft(x̂t)(x− x̂t)+2µG2R2

+
1

2α
‖x− x̂t‖2−

1

2α
‖x− x̂t+1‖2, ∀x ∈ (1− γ)X (6.46)

where we used the non-negativity that λt ≥ 0, and the convexity such that gt(x̂t)+∇>gt(x̂t)(x−
x̂t) ≤ gt(x).

Using the Cauchy-Schwarz inequality, we have that

−∇̂>ft(x̂t)(x̂t+1−x̂t)≤α‖∇̂ft(x̂t)‖2 +
‖x̂t+1−x̂t‖2

4α
. (6.47)

Plugging (6.47) into (6.46), for ∀x ∈ (1− γ)X , we have that

1

µ
∆(λt)+

1

4α
‖x̂t+1−x̂t‖2 ≤ λ>t gt(x) + ∇̂>ft(x̂t) (x− x̂t)

+ 2µG2R2+
1

2α
‖x− x̂t‖2−

1

2α
‖x− x̂t+1‖2 + α‖∇̂ft(x̂t)‖2. (6.48)

Taking expectation over ut on both side of (6.48) conditioning on x̂t, it follows that

1

µ
E[∆(λt)]+

1

4α
E[‖x̂t+1−x̂t‖2] (6.49)

≤λ>t gt(x) + E
[
∇̂>ft(x̂t) (x− x̂t)

]
+2µG2R2

+
1

2α
‖x− x̂t‖2−

1

2α
E[‖x− x̂t+1‖2] + α‖∇̂ft(x̂t)‖2

(a)
= λ>t gt(x) +∇>f̌t(x̂t) (x− x̂t)+2µG2R2

+
1

2α
‖x− x̂t‖2−

1

2α
E[‖x− x̂t+1‖2] + α‖∇̂ft(x̂t)‖2
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where (a) holds since the randomness ut in ∇̂ft(x̂t) is independent of x̂t, and ∇̂ft(x̂t) is an

unbiased estimator of∇f̌t(x̂t).

The convexity of ft(x) implies that f̌t(x) is also convex, and thus ∇>f̌t(x̂t) (x− x̂t) ≤
f̌t(x)− f̌t(x̂t). Plugging into (6.49) and taking expectation over all possible x̂t, it follows that

1

µ
E[∆(λt)]+

1

4α
E[‖x̂t+1−x̂t‖2] (6.50)

≤ f̌t(x)− E[f̌t(x̂t)] + E[λ>t gt(x)] +2µG2R2

+
1

2α
E[‖x− x̂t‖2]− 1

2α
E[‖x− x̂t+1‖2]+αE[‖∇̂ft(x̂t)‖2]

which completes the proof by dropping E[‖x̂t+1−x̂t‖2].

If one plugs x = x∗t into (6.40), Lemma 24 asserts that the approximate per-slot regret depends

on the norm of the primal-dual gradients as well as the drift of the primal-dual updates.

6.6.3 Proof of Theorem 11

With γ = δ/r, the feasibility of actions {x1,t} readily follows from Lemma 22, i.e., x1,t ∈ X , ∀t.
As the dynamic fit eventually depends on the norm of the dual variable (cf. Lemma 23), the

following result is needed.

Lemma 25 (Bound on dual variables). For the BanSaP recursion, if α = µ = O(T−
3
4 ) and

δ = O(T−
1
4 ), the dual iterates are bounded by ‖λt‖ ≤ C=O(1), with constant given by

C :=max

{
2GR,

(1

η
+1
)
GR+

2G2R2µ

η
+
d2F 2α

ηδ2
+
µR2

2αη

}
(6.51)

where the constants G, R, and η are as in (as2)-(as4).

Proof: Plugging the bounded norm of the one-point gradient estimator (6.37) into (6.40), it holds

that

1

µ
E[∆(λt)] ≤GR+ E[λ>t gt(x)] +2µG2R2+

d2F 2α

δ2

+
1

2α
E[‖x− x̂t‖2]− 1

2α
E[‖x− x̂t+1‖2] (6.52)

where we used the Lipschitz condition on (6.40); i.e.,

E[f̌t(x)− f̌t(x̂t)] ≤ GR. (6.53)
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Selecting the interior point x = x̃ ∈ (1− γ)X so that gt(x̃) ≤ −η1, it follows from (6.52)

that

1

µ
E[∆(λt)] ≤GR− ηE[λ>t 1] +2µG2R2+

d2F 2α

δ2

+
1

2α
E[‖x̃− x̂t‖2]− 1

2α
E[‖x̃− x̂t+1‖2]. (6.54)

Using −ηλ>t 1 = −η‖λt‖1 ≤ −η‖λt‖, we arrive at

1

µ
E[∆(λt)] ≤GR− ηE[‖λt‖] +2µG2R2+

d2F 2α

δ2

+
1

2α
E[‖x̃− x̂t‖2]− 1

2α
E[‖x̃− x̂t+1‖2]. (6.55)

Now we are ready to show that the norm of the dual variable is uniformly bounded by a

constant C that is independent of time; that is, ‖λt‖ ≤ C, ∀t.
For 1 ≤ t ≤ 1

µ , it follows readily that

‖λt‖ ≤ ‖λt−1‖+ µ‖gt(x̂t) +∇>gt(x̂t)(x̂t+1 − x̂t)‖
≤ ‖λt−1‖+ 2µGR ≤ ‖λ1‖+ 2µtGR ≤ C (6.56)

where the last inequality follows from λ1 = 0, t ≤ 1/µ, and the definition of C in (6.51).

For 1
µ ≤ t ≤ T , we will prove the claim by contradiction. Assume T0 is the first slot for which

‖λT0‖ > C. Therefore, we have ‖λT0‖ > C ≥ ‖λT0− 1
µ
‖, which after recalling (6.55) and the

definition of ∆(λt), yields

1

µ

T0−1∑
t=T0− 1

µ

E[∆(λt)]=
1

2µ

(
E
[
‖λT0‖2−‖λT0− 1

µ
‖2
])
>0. (6.57)

On the other hand however, summing up (6.55), we obtain

1

µ

T0−1∑
t=T0− 1

µ

E[∆(λt)] ≤
GR

µ
− η

T0−1∑
t=T0− 1

µ

E[‖λt‖] +2G2R2

+
d2F 2α

µδ2
+

1

2α
E[‖x̃− x̂T0− 1

µ
‖2]− 1

2α
E[‖x̃− x̂T0‖2]
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(a)

≤GR
µ
− η

T0−1∑
t=T0− 1

µ

E[‖λt‖] +2G2R2+
d2F 2α

µδ2
+
R2

2α
(6.58)

where (a) uses again the bound ‖x̃− x̂T0− 1
µ
‖ ≤ R.

Note that since ‖λT0‖ > C and ‖λT0‖ − ‖λT0−1‖ ≤ 2µGR, we have that

‖λT0−τ‖ > C − 2τµGR. (6.59)

Combining (6.58) with (6.59), we deduce

1

µ

T0−1∑
t=T0− 1

µ

E[∆(λt)]≤
GR

µ
−Cη
µ

+
ηGR

µ
+2G2R2+

d2F 2α

µδ2
+
R2

2α
. (6.60)

Together with (6.57), recursion (6.60) implies that

C <
GR

η
+GR+

2G2R2µ

η
+
d2F 2α

ηδ2
+
µR2

2αη
(6.61)

which contradicts the definition of C in (6.51). Hence, there is no T0 satisfying ‖λt‖ ≤ C, which

implies that ‖λt‖ ≤ C, ∀t.
By choosing the stepsizes α = µ = O(T−

3
4 ), and the parameter δ = O(T−

1
4 ), it follows that

C=O
(
GR

η
+GR+

2G2R2

ηT
3
4

+
d2F 2

ηT
1
4

+
R2

2η

)
=O(1) (6.62)

which completes the proof of the lemma.

Dynamic regret in Theorem 1: The dynamic regret follows from Lemma 25. Recall that x∗t

is the minimizer of the time-varying problem (6.20), and (1− γ)x∗t ∈ (1− γ)X . Hence, plugging

(1− γ)x∗t into (6.40), we have

1

µ
E[∆(λt)] ≤ f̌t((1− γ)x∗t )− E[f̌t(x̂t)]

+
1

2α
E[‖(1− γ)x∗t − x̂t‖2]− 1

2α
E[‖(1− γ)x∗t − x̂t+1‖2]

+E[λ>t gt((1− γ)x∗t )] +
α

δ2
d2F 2 + 2µG2R2. (6.63)
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From the Lipschitz condition, we can bound the inner product in (6.63) by

E[λ>t gt((1− γ)x∗t )] ≤ E[λ>t (gt(x
∗
t )+γGR·1)]

(a)

≤ γGRE[‖λt‖]
(b)

≤ γGR‖λ̄‖ (6.64)

where (a) follows from λ>t gt(x
∗
t ) ≤ 0 since gt(x

∗
t ) ≤ 0, and λt ≥ 0; and (b) uses the upper

bound of ‖λ̄‖ := maxt ‖λt‖. The two distance terms in (6.63) can be bounded by

‖(1− γ)x∗t −x̂t‖2− ‖(1− γ)x∗t−x̂t+1‖2

= ‖(1− γ)x∗t −x̂t‖2− ‖(1− γ)x∗t−1 − x̂t‖2

+ ‖(1− γ)x∗t−1 − x̂t‖2− ‖(1− γ)x∗t−x̂t+1‖2

= (1− γ)‖x∗t − x∗t−1‖‖(1− γ)(x∗t + x∗t−1)− 2x̂t‖
+‖(1− γ)x∗t−1 − x̂t‖2 − ‖(1− γ)x∗t−x̂t+1‖2. (6.65)

Using the triangle inequality, it follows that

‖(1− γ)(x∗t + x∗t−1)− 2x̂t‖ ≤ ‖(1− γ)x∗t − x̂t‖+ ‖(1− γ)x∗t−1 − x̂t‖ ≤ 2R (6.66)

which together with (6.65), implies that

‖(1− γ)x∗t −x̂t‖2− ‖(1− γ)x∗t−x̂t+1‖2

≤ 2(1− γ)R‖x∗t − x∗t−1‖+ ‖(1− γ)x∗t−1 − x̂t‖2 − ‖(1− γ)x∗t−x̂t+1‖2. (6.67)

Plugging (6.64) and (6.67) into (6.63), and summing up over t = 1, . . . , T , we find

1

2µ

(
E[‖λT+1‖2−‖λ1‖2]

)
+

T∑
t=1

(
E[f̌t(x̂t)]−f̌t((1− γ)x∗t )

)
≤γGR‖λ̄‖T+

T∑
t=1

(1−γ)R

α
‖x∗t−x∗t−1‖+2µG2R2T+

αd2F 2T

δ2

+
1

2α

(
E
[
‖(1− γ)x∗0 − x̂1‖2

]
−E
[
‖(1− γ)x∗T − x̂T+1‖2

])
(c)

≤ γGR‖λ̄‖T+
R

α
V (x∗1:T )+ 2µG2R2T+

R2

2α
+
αd2F 2T

δ2
(6.68)

where (c) uses ‖(1− γ)x∗0 − x̂1‖ ≤ ‖x∗0 − x̂1‖ ≤ R, and V (x∗1:T ) :=
∑T

t=1 ‖x∗t − x∗t−1‖.
Since E[‖λT+1‖2] ≥ 0, initializing the dual variable with λ1 = 0, and rearranging (6.68), we
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have that

T∑
t=1

(
E[f̌t(x̂t)]−f̌t((1− γ)x∗t )

)
≤γGR‖λ̄‖T+

R

α
V (x∗1:T )+2µG2R2T+

R2

2α
+
αd2F 2T

δ2
. (6.69)

The iterates {x̂t} in this bound are not the actual decisions taken by the learner. To obtain the

regret bound, our next step is to decompose the regret as

T∑
t=1

(
E[ft(x1,t)]− ft(x∗t )

)
=

T∑
t=1

(
E[ft(x1,t)]− E[f̌t(x1,t)]︸ ︷︷ ︸

U1

+ E[f̌t(x1,t)]− E[f̌t(x̂t)]︸ ︷︷ ︸
U2

+ E[f̌t(x̂t)]− f̌t((1− γ)x∗t ))︸ ︷︷ ︸
U3

+ f̌t((1− γ)x∗t ))− f̌t(x∗t )︸ ︷︷ ︸
U4

+ f̌t(x
∗
t )− ft(x∗t )︸ ︷︷ ︸
U5

)
. (6.70)

We next bound each under-braced, starting with

U1 =E [ft(x1,t)− Ev[ft(x1,t + δvt)]]

(d)

≤E [ft(x1,t)− ft(Ev[x1,t + δvt])]
(e)
= 0 (6.71)

where (d) uses Jensen’s inequality, and (e) follows from Ev[δvt] = 0 since vt is drawn from

B := {v : ‖v‖ ≤ 1}.
Regarding the second term, it follows that

U2 = E[f̌t(x̂t + δut)− f̌t(x̂t)]
(f)

≤ E[G‖δut‖] = δG (6.72)

where (f) uses the Lipschitz condition of f̌t(x). The third term U3 has been already bounded as in

(6.69).

Using the Lipschitz condition of f̌t(x), we can further bound

U4 = f̌t((1− γ)x∗t ))− f̌t(x∗t ) ≤ γGR (6.73)
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and likewise for the last term for which

U5 = Ev[ft(x
∗
t + δvt)]−ft(x∗t ) ≤ Ev [G‖δvt‖]≤δG. (6.74)

Plugging (6.69) and (6.71)-(6.74) into (6.70), we arrive that

T∑
t=1

(
E[ft(x1,t)]− ft(x∗t )

)
≤R
α
V (x∗1:T ) +

R2

2α
+
d2G2R2αT

δ2

+γGRT (1 + ‖λ̄‖) +2µG2R2T +2GδT. (6.75)

Upon choosing α = µ = O(T−
3
4 ), and δ = O(T−

1
4 ) along with γ = δ/r, it follows that (cf.

Lemma 25)

Regd
T =O

(
RV (x∗1:T )T

3
4+GRCT

3
4+2G2R2T

1
4+d2G2R2T

3
4

)
from which the proof is complete.

Dynamic fit in Theorem 1: To bound the dynamic fit, recall that the constraint violations in

Lemma 23 depend on the norm of the dual variable and the difference of two consecutive primal

iterates. While the dual variable has been bounded in Lemma 25, the distance between x̂t and

x̂t+1 is bounded by

‖x̂t+1 − x̂t‖
(a)

≤
∥∥α∇̂1

xLt(x̂t,λt)
∥∥

(b)

≤ d
δ
|ft(x̂t + δut)|+‖∇gt(x̂t)‖‖λt‖

(c)

≤ αdF

δ
+αG‖λt‖ (6.76)

where (a) uses the non-expansive property of the projection operator, (b) relies on (6.12) and the

Cauchy-Schwarz’s inequality; and (c) uses the bounds in (as2).

On the other hand, using the Lipschitz continuity of gt(x) and (6.39), it follows that

T∑
t=1

gt(x1,t) ≤
T∑
t=1

gt(x̂t) + δGT1 (6.77)

≤λT+1

µ
+
G2T1

2β
+
β

2

T∑
t=1

‖x̂t+1 − x̂t‖21 + δGT1

(d)

≤ λT+1

µ
+
G2T1

2β
+ βT

(α2d2F 2

δ2
+ α2G2‖λ̄‖2

)
1 + δGT1
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where (d) uses (6.76), and the fact that (a+ b)2 ≤ 2(a2 + b2). Taking [·]+ and ‖ · ‖ on both sides

of (6.77), we have (cf. (6.21))

Fitd
T ≤
‖λ̄‖
µ

+
G2
√
NT

2β
+δG

√
NT

+β
√
NT

(
α2d2F 2/δ2+α2G2‖λ̄‖2

)
(6.78)

which establishes (6.24). Upon selecting α = O(T−
3
4 ), and δ = O(T−

1
4 ), we find from Lemma

25 that ‖λ̄‖ ≤ C = O(1). Together with µ = O(T−
3
4 ) and β = O(T

1
4 ), it holds that

Fitd
T ≤CT

3
4 +

G2
√
NT

3
4

2
+G
√
NT

3
4

+
√
NT

5
4

(
d2F 2T−1+T−

3
2G2C2

)
= O(T

3
4 ) (6.79)

which completes the proof of (6.25).

6.6.4 Proof of Theorem 12

The proof is similar to that of Theorem 11, and it is included here for completeness. The feasibility

of actions {x1,t,x2,t} readily follows from Lemma 22. To prove the dynamic regret and fit bounds

in this setup, the following result is needed.

Lemma 26 (Bound on dual variables). For the BanSaP recursion, selecting α = µ = O(T−
1
2 )

ensures that the dual iterates are bounded by ‖λt‖ ≤ C = O(1), with the constant given by

C :=max

{
2GR,

(
1

η
+1

)
GR+

2G2R2µ

η
+
d2G2α

η
+
µR2

2αη

}
(6.80)

where the constants G, R, and η are as in (as2)-(as4).

Proof: It follows the same steps as those used to prove Lemma 25.

Lemma 26 asserts that the dual variable in BanSaP with two-point bandit feedback is also

uniformly bounded from above. Now, we are ready to prove the regret bound in Theorem 12.

Dynamic regret in Theorem 2: To obtain the regret bound in the two-point case, our first

step is to connect the regret with the loss induced by the virtual iterates {x̂t}, given by

1

2

(
E[ft(x1,t)] + E[ft(x2,t)]

)
− ft(x∗t )

≤1

2

(
E[ft(x̂t)] + δG+ E[ft(x̂t)] + δG

)
− ft(x∗t )
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=
(

E[ft(x̂t)]− ft(x∗t )
)

+ δG (6.81)

where the inequality follows from the Lipschitz condition.

The LHS of (6.81) can be further decomposed as

E[ft(x̂t)]− E[f̌t(x̂t)]︸ ︷︷ ︸
U1

+ E[f̌t(x̂t)]− f̌t((1− γ)x∗t ))︸ ︷︷ ︸
U2

+ f̌t((1− γ)x∗t ))−f̌t(x∗t )︸ ︷︷ ︸
U3

+ f̌t(x
∗
t )−ft(x∗t )︸ ︷︷ ︸
U4

+δG. (6.82)

For the first term, following the steps in (6.71), we have that

U1≤E [ft(x̂t)− ft(Ev[x̂ + δvt])] ≤ 0. (6.83)

Similar to (6.69), we have for the case of two-point feedback

T∑
t=1

U2≤γGR‖λ̄‖T+
R

α
V (x∗1:T )+2µG2R2T+

R2

2α
+αd2G2T.

Using the Lipschitz condition of f̌t(x), U3 is bounded by

U3 = f̌t((1− γ)x∗t ))− f̌t(x∗t ) ≤ γGR (6.84)

and for U4, it follows from the Lipschitz condition that

U4 = Ev[ft(x
∗
t + δvt)]−ft(x∗t ) ≤ δG. (6.85)

Summing up (6.81) over t, and plugging (6.83)-(6.85), we have

1

2

T∑
t=1

(
E[ft(x1,t)] + E[ft(x2,t)]

)
−

T∑
t=1

ft(x
∗
t ) ≤

R

α
V (x∗1:T )

+
R2

2α
+2µG2R2T+αd2G2T+γGRT (1+‖λ̄‖)+2δGT. (6.86)

Upon choosing α = µ = O(T−
1
2 ), and δ = O(T−1) along with γ = δ/r, it follows that
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(ignoring constant terms)

Regd
T =O

(
RV (x∗1:T )T

1
2 +

1

2
R2T

1
2 +2G2R2T

1
2+d2G2T

1
2

)
where we used Lemma 26. This completes the proof of (6.26).

Dynamic fit in Theorem 2: Regarding the dynamic fit, recall that the constraint violations

in (6.39) depend on the norm of dual variables and the difference of consecutive primal iterates.

While the dual variable has been bounded in Lemma 26, the distance between iterates xt and x̂t+1

can be bounded by

‖x̂t+1 − x̂t‖ ≤
∥∥α∇̂2

xLt(x̂t,λt)
∥∥

≤‖∇̂2ft(x̂t)‖+ ‖∇gt(x̂t)‖‖λt‖ ≤ αdG+ αG‖λ̄‖. (6.87)

In addition, similar to the step in (6.77), we arrive at

1

2

T∑
t=1

(gt(x1,t) + gt(x2,t)) (6.88)

(a)

≤ λT+1

µ
+
G2T1

2β
+ βT

(
α2d2G2 + α2G2‖λ̄‖2

)
1 + δGT1

where (a) uses (6.87) instead of (6.76) used in (6.77).

If we take [·]+ and ‖ · ‖ on both sides of (6.88), and choose α = µ = O(T−
1
2 ), δ = T−1, and

β = O(T
1
2 ), we arrive at

Fitd
T ≤
‖λT+1‖

µ
+
G2N

1
2T

2β
+βN

1
2T
(
α2d2G2 + α2G2‖λ̄‖2

)
=CT

1
2 +N

1
2T

1
2G2

(
1

2
+ d2 + C2

)
= O

(
T

1
2

)
(6.89)

where we used the bound on dual variables in Lemma 26. This completes also the proof of (6.28),

and also that of Theorem 12.



Chapter 7

Summary and future directions

In this final chapter, we provide a summary of the main results discussed in this thesis, and also

point out a few promising directions for future research.

7.1 Thesis summary

This thesis presented a set of contributions at the intersection of optimization, machine learning

and networked systems such as IoT. The focus was on building fundamental connections between

methodologies from machine learning, optimization, and networking communities, and developing

inter-disciplinary approaches for IoT.

In the first part of the thesis, which contains Chapters 2 and 3, the aim was to develop

communication-efficient distributed learning methods amenable to efficient implementation in the

IoT paradigm with ubiquitous devices. The novel methods are simple and general, thus facilitating

application to (un-/semi-)supervised learning and reinforcement learning tasks.

Chapter 2 dealt with the federated learning problem emerging in IoT, and developed a promis-

ing communication-cognizant method for distributed machine learning that we term Lazily Aggre-

gated Gradient (LAG) approach. LAG can achieve the same convergence rates as batch gradient

descent (GD) in smooth strongly-convex, convex, and nonconvex cases, and requires fewer commu-

nication rounds than GD given that the datasets at different workers are heterogeneous. Confirmed

by the impressive empirical performance on both synthetic and real datasets, LAG is expected to

bring valuable insights to the future algorithm design.

Chapter 3 studied the distributed reinforcement learning (DRL) problem involving a cen-

tral controller and a group of heterogeneous learners, which includes the popular multi-agent
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collaborative RL and the parallel RL settings. Targeting DRL applications in communication-

constrained environments, the goal was to learn a DRL policy minimizing the loss aggregated

over all learners, using as few communication rounds as possible. We developed a promising

communication-cognizant method for DRL that we term Lazily Aggregated Policy Gradient

(LAPG) approach. LAPG can achieve the same convergence rates as PG, and requires fewer

communication rounds given that the learners in DRL are heterogeneous. Promising empirical

performance on the multi-agent cooperative navigation task corroborated our theoretical findings.

The second part of the thesis, which includes Chapters 4-6, introduced a class of online

resource management approaches, which are adaptive to different stationarity assumptions of the

IoT operation, and different levels of available information in the complex environment.

Leveraging recent advances in statistical learning and optimization, a novel online approach

termed LA-SDG was developed in Chapter 4. LA-SDG learns the network state statistics through

an additional sample recourse procedure. The associated novel iteration can be nicely interpreted

as a modified heavy-ball recursion with an extra correction step to mitigate steady-state oscilla-

tions. It was analytically established that LA-SDG achieves a near-optimal cost-delay tradeoff

[µ, log2(µ)/
√
µ], which is better than [µ, 1/µ] of stochastic dual gradient (SDG), at the cost of

only one extra gradient evaluation per new datum. A future research agenda can include novel

approaches to further hedge against non-stationarity, and improved learning schemes to uncover

other valuable statistical patterns from historical data.

Chapter 5 tackled the network resource management problem from the perspective of online

convex optimization (OCO) with both adversarial costs and constraints. Different from existing

works, the focus is on a setting where some of the constraints are revealed after taking actions,

they are tolerable to instantaneous violations, but must be satisfied on average. Performance of

the novel OCO algorithm is measured by: i) the difference of its objective relative to the best

dynamic solution with one-slot-ahead information of the cost and the constraint (dynamic regret);

and, ii) its accumulated amount of constraint violations (dynamic fit). It has been shown that the

proposed MOSP algorithm adapts to the considered OCO setting with adversarial constraints.

Under standard assumptions, MOSP simultaneously yields sub-linear dynamic regret and fit, if

the accumulated variations of the per-slot minimizers and adversarial constraints are sub-linearly

increasing with time. Algorithm design and performance analysis in this novel OCO setting, under

adversarial constraints and with a dynamic benchmark, broaden the applicability of OCO to a

wider application regime, which includes dynamic network resource allocation and online demand

response in smart grids. Numerical tests demonstrated that the proposed algorithm outperforms

state-of-the-art alternatives under different scenarios.
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Chapter 6 studied the network resource management problem from the vantage point of bandit

convex optimization (BCO). Different from existing works in bandit settings, the focus was on

a broader setting where part of the constraints are revealed after taking actions, and are also

tolerable to instantaneous violations but have to be satisfied on average. The novel BCO setting

fits well the emerging fog computing tasks in IoT. A class of online bandit saddle-point (BanSaP)

approaches were proposed, and their online performance was rigorously analyzed. It was shown

that the resultant regret bounds match those attained in BCO setups without long-term constraints.

Furthermore, the BanSaP solvers can simultaneously yield sub-linear dynamic regret and fit, if the

dynamic solutions vary slowly over time.

7.2 Future research directions

Moving forward, I will continue my research on developing scalable learning approaches for

intelligent systems including IoT. I will develop a research program that poses problems of practical

interest and addresses their theoretical challenges. Below is an outline of thrusts I aim to pursue.

7.2.1 Risk-averse learning and computing

While IoT promises major benefits drawn from the seamless integration of machine learning and

AI, the critical concerns on their safe deployment cannot be understated. However, a number of

devices in IoT may be highly unreliable or even easily compromised by hackers. In this scenario,

the current edge computing paradigm lacks secure training ability, which renders it vulnerable

to failures, not mentioning adversarial attacks. For example, stochastic gradient descent, the

workhorse of large-scale learning, is vulnerable to even one malicious device. Such levels of risk

provide ample drive for fundamental research efforts to fulfill the desiderata of safe AI for IoT. To

this end, my research agenda seeks both communication-efficient and risk-averse approaches for

the entire gamut of federated learning problems, from supervised to unsurprised learning, as well

as reinforcement learning that is essential for pushing forward the autonomous driving techniques.

Inspired by robust estimation of statistical signal processing, I will investigate robust information

aggregation from heterogeneous devices, and put forth a class of resilient learning approaches

with provable performance guarantees.



173

7.2.2 Communication and machine learning co-design

The overarching goal of edge computing is to fast extract intelligence from the large volume of

data distributed at IoT devices. This critically depends on machine learning approaches that run on

edge servers, as well as efficient communication between edge servers and devices. Unfortunately,

the traditional design principle of communication systems, namely low packet loss and high data

rate, does not account for the need of running iterative learning approaches at the edge. On the

other hand, the pursuit of machine learning research, namely high model expressibility and low

learning accuracy, does not optimize for the existing communication network infrastructure. While

research efforts in wireless communication and machine learning have so far evolved separately,

my strong belief is that they will eventually converge in the forthcoming IoT paradigm. With the

co-design of communication and machine learning, communication can exploit the insights gained

from learning algorithms, while learning can become more cost-effective.
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