31 research outputs found

    Online Learning for Time Series Prediction

    Full text link
    In this paper we address the problem of predicting a time series using the ARMA (autoregressive moving average) model, under minimal assumptions on the noise terms. Using regret minimization techniques, we develop effective online learning algorithms for the prediction problem, without assuming that the noise terms are Gaussian, identically distributed or even independent. Furthermore, we show that our algorithm's performances asymptotically approaches the performance of the best ARMA model in hindsight.Comment: 17 pages, 6 figure

    On-Line Learning of Linear Dynamical Systems: Exponential Forgetting in Kalman Filters

    Full text link
    Kalman filter is a key tool for time-series forecasting and analysis. We show that the dependence of a prediction of Kalman filter on the past is decaying exponentially, whenever the process noise is non-degenerate. Therefore, Kalman filter may be approximated by regression on a few recent observations. Surprisingly, we also show that having some process noise is essential for the exponential decay. With no process noise, it may happen that the forecast depends on all of the past uniformly, which makes forecasting more difficult. Based on this insight, we devise an on-line algorithm for improper learning of a linear dynamical system (LDS), which considers only a few most recent observations. We use our decay results to provide the first regret bounds w.r.t. to Kalman filters within learning an LDS. That is, we compare the results of our algorithm to the best, in hindsight, Kalman filter for a given signal. Also, the algorithm is practical: its per-update run-time is linear in the regression depth

    Aggregation of predictors for nonstationary sub-linear processes and online adaptive forecasting of time varying autoregressive processes

    Full text link
    In this work, we study the problem of aggregating a finite number of predictors for nonstationary sub-linear processes. We provide oracle inequalities relying essentially on three ingredients: (1) a uniform bound of the â„“1\ell^1 norm of the time varying sub-linear coefficients, (2) a Lipschitz assumption on the predictors and (3) moment conditions on the noise appearing in the linear representation. Two kinds of aggregations are considered giving rise to different moment conditions on the noise and more or less sharp oracle inequalities. We apply this approach for deriving an adaptive predictor for locally stationary time varying autoregressive (TVAR) processes. It is obtained by aggregating a finite number of well chosen predictors, each of them enjoying an optimal minimax convergence rate under specific smoothness conditions on the TVAR coefficients. We show that the obtained aggregated predictor achieves a minimax rate while adapting to the unknown smoothness. To prove this result, a lower bound is established for the minimax rate of the prediction risk for the TVAR process. Numerical experiments complete this study. An important feature of this approach is that the aggregated predictor can be computed recursively and is thus applicable in an online prediction context.Comment: Published at http://dx.doi.org/10.1214/15-AOS1345 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Online Dynamics Learning for Predictive Control with an Application to Aerial Robots

    Full text link
    In this work, we consider the task of improving the accuracy of dynamic models for model predictive control (MPC) in an online setting. Even though prediction models can be learned and applied to model-based controllers, these models are often learned offline. In this offline setting, training data is first collected and a prediction model is learned through an elaborated training procedure. After the model is trained to a desired accuracy, it is then deployed in a model predictive controller. However, since the model is learned offline, it does not adapt to disturbances or model errors observed during deployment. To improve the adaptiveness of the model and the controller, we propose an online dynamics learning framework that continually improves the accuracy of the dynamic model during deployment. We adopt knowledge-based neural ordinary differential equations (KNODE) as the dynamic models, and use techniques inspired by transfer learning to continually improve the model accuracy. We demonstrate the efficacy of our framework with a quadrotor robot, and verify the framework in both simulations and physical experiments. Results show that the proposed approach is able to account for disturbances that are possibly time-varying, while maintaining good trajectory tracking performance.Comment: 8 pages, 4 figure
    corecore