14 research outputs found

    Online Influence Maximization under Independent Cascade Model with Semi-Bandit Feedback

    Get PDF
    We study the online influence maximization problem in social networks under the independent cascade model. Specifically, we aim to learn the set of "best influencers" in a social network online while repeatedly interacting with it. We address the challenges of (i) combinatorial action space, since the number of feasible influencer sets grows exponentially with the maximum number of influencers, and (ii) limited feedback, since only the influenced portion of the network is observed. Under a stochastic semi-bandit feedback, we propose and analyze IMLinUCB, a computationally efficient UCB-based algorithm. Our bounds on the cumulative regret are polynomial in all quantities of interest, achieve near-optimal dependence on the number of interactions and reflect the topology of the network and the activation probabilities of its edges, thereby giving insights on the problem complexity. To the best of our knowledge, these are the first such results. Our experiments show that in several representative graph topologies, the regret of IMLinUCB scales as suggested by our upper bounds. IMLinUCB permits linear generalization and thus is both statistically and computationally suitable for large-scale problems. Our experiments also show that IMLinUCB with linear generalization can lead to low regret in real-world online influence maximization.Comment: Compared with the previous version, this version has fixed a mistake. This version is also consistent with the NIPS camera-ready versio

    Cascade Size Distributions: Why They Matter and How to Compute Them Efficiently

    Full text link
    Cascade models are central to understanding, predicting, and controlling epidemic spreading and information propagation. Related optimization, including influence maximization, model parameter inference, or the development of vaccination strategies, relies heavily on sampling from a model. This is either inefficient or inaccurate. As alternative, we present an efficient message passing algorithm that computes the probability distribution of the cascade size for the Independent Cascade Model on weighted directed networks and generalizations. Our approach is exact on trees but can be applied to any network topology. It approximates locally tree-like networks well, scales to large networks, and can lead to surprisingly good performance on more dense networks, as we also exemplify on real world data.Comment: Accepted at AAAI 202

    On the Approximation Relationship between Optimizing Ratio of Submodular (RS) and Difference of Submodular (DS) Functions

    Full text link
    We demonstrate that from an algorithm guaranteeing an approximation factor for the ratio of submodular (RS) optimization problem, we can build another algorithm having a different kind of approximation guarantee -- weaker than the classical one -- for the difference of submodular (DS) optimization problem, and vice versa. We also illustrate the link between these two problems by analyzing a \textsc{Greedy} algorithm which approximately maximizes objective functions of the form Ψ(f,g)\Psi(f,g), where f,gf,g are two non-negative, monotone, submodular functions and Ψ\Psi is a {quasiconvex} 2-variables function, which is non decreasing with respect to the first variable. For the choice Ψ(f,g)≜f/g\Psi(f,g)\triangleq f/g, we recover RS, and for the choice Ψ(f,g)≜f−g\Psi(f,g)\triangleq f-g, we recover DS. To the best of our knowledge, this greedy approach is new for DS optimization. For RS optimization, it reduces to the standard \textsc{GreedRatio} algorithm that has already been analyzed previously. However, our analysis is novel for this case

    Contextual Centrality: Going Beyond Network Structures

    Full text link
    Centrality is a fundamental network property which ranks nodes by their structural importance. However, structural importance may not suffice to predict successful diffusions in a wide range of applications, such as word-of-mouth marketing and political campaigns. In particular, nodes with high structural importance may contribute negatively to the objective of the diffusion. To address this problem, we propose contextual centrality, which integrates structural positions, the diffusion process, and, most importantly, nodal contributions to the objective of the diffusion. We perform an empirical analysis of the adoption of microfinance in Indian villages and weather insurance in Chinese villages. Results show that contextual centrality of the first-informed individuals has higher predictive power towards the eventual adoption outcomes than other standard centrality measures. Interestingly, when the product of diffusion rate pp and the largest eigenvalue λ1\lambda_1 is larger than one and diffusion period is long, contextual centrality linearly scales with eigenvector centrality. This approximation reveals that contextual centrality identifies scenarios where a higher diffusion rate of individuals may negatively influence the cascade payoff. Further simulations on the synthetic and real-world networks show that contextual centrality has the advantage of selecting an individual whose local neighborhood generates a high cascade payoff when pλ1<1p \lambda_1 < 1. Under this condition, stronger homophily leads to higher cascade payoff. Our results suggest that contextual centrality captures more complicated dynamics on networks and has significant implications for applications, such as information diffusion, viral marketing, and political campaigns

    Clinical trial of an AI-augmented intervention for HIV prevention in youth experiencing homelessness

    Full text link
    Youth experiencing homelessness (YEH) are subject to substantially greater risk of HIV infection, compounded both by their lack of access to stable housing and the disproportionate representation of youth of marginalized racial, ethnic, and gender identity groups among YEH. A key goal for health equity is to improve adoption of protective behaviors in this population. One promising strategy for intervention is to recruit peer leaders from the population of YEH to promote behaviors such as condom usage and regular HIV testing to their social contacts. This raises a computational question: which youth should be selected as peer leaders to maximize the overall impact of the intervention? We developed an artificial intelligence system to optimize such social network interventions in a community health setting. We conducted a clinical trial enrolling 713 YEH at drop-in centers in a large US city. The clinical trial compared interventions planned with the algorithm to those where the highest-degree nodes in the youths' social network were recruited as peer leaders (the standard method in public health) and to an observation-only control group. Results from the clinical trial show that youth in the AI group experience statistically significant reductions in key risk behaviors for HIV transmission, while those in the other groups do not. This provides, to our knowledge, the first empirical validation of the usage of AI methods to optimize social network interventions for health. We conclude by discussing lessons learned over the course of the project which may inform future attempts to use AI in community-level interventions
    corecore