1,905 research outputs found

    Towards a Scalable Hardware/Software Co-Design Platform for Real-time Pedestrian Tracking Based on a ZYNQ-7000 Device

    Get PDF
    Currently, most designers face a daunting task to research different design flows and learn the intricacies of specific software from various manufacturers in hardware/software co-design. An urgent need of creating a scalable hardware/software co-design platform has become a key strategic element for developing hardware/software integrated systems. In this paper, we propose a new design flow for building a scalable co-design platform on FPGA-based system-on-chip. We employ an integrated approach to implement a histogram oriented gradients (HOG) and a support vector machine (SVM) classification on a programmable device for pedestrian tracking. Not only was hardware resource analysis reported, but the precision and success rates of pedestrian tracking on nine open access image data sets are also analysed. Finally, our proposed design flow can be used for any real-time image processingrelated products on programmable ZYNQ-based embedded systems, which benefits from a reduced design time and provide a scalable solution for embedded image processing products

    LCrowdV: Generating Labeled Videos for Simulation-based Crowd Behavior Learning

    Full text link
    We present a novel procedural framework to generate an arbitrary number of labeled crowd videos (LCrowdV). The resulting crowd video datasets are used to design accurate algorithms or training models for crowded scene understanding. Our overall approach is composed of two components: a procedural simulation framework for generating crowd movements and behaviors, and a procedural rendering framework to generate different videos or images. Each video or image is automatically labeled based on the environment, number of pedestrians, density, behavior, flow, lighting conditions, viewpoint, noise, etc. Furthermore, we can increase the realism by combining synthetically-generated behaviors with real-world background videos. We demonstrate the benefits of LCrowdV over prior lableled crowd datasets by improving the accuracy of pedestrian detection and crowd behavior classification algorithms. LCrowdV would be released on the WWW

    Learning Background-Aware Correlation Filters for Visual Tracking

    Full text link
    Correlation Filters (CFs) have recently demonstrated excellent performance in terms of rapidly tracking objects under challenging photometric and geometric variations. The strength of the approach comes from its ability to efficiently learn - "on the fly" - how the object is changing over time. A fundamental drawback to CFs, however, is that the background of the object is not be modelled over time which can result in suboptimal results. In this paper we propose a Background-Aware CF that can model how both the foreground and background of the object varies over time. Our approach, like conventional CFs, is extremely computationally efficient - and extensive experiments over multiple tracking benchmarks demonstrate the superior accuracy and real-time performance of our method compared to the state-of-the-art trackers including those based on a deep learning paradigm

    Analysis-by-synthesis: Pedestrian tracking with crowd simulation models in a multi-camera video network

    Get PDF
    For tracking systems consisting of multiple cameras with overlapping field-of-views, homography-based approaches are widely adopted to significantly reduce occlusions among pedestrians by sharing information among multiple views. However, in these approaches, the usage of information under real-world coordinates is only at a preliminary level. Therefore, in this paper, a multi-camera tracking system with integrated crowd simulation is proposed in order to explore the possibility to make homography information more helpful. Two crowd simulators with different simulation strategies are used to investigate the influence of the simulation strategy on the final tracking performance. The performance is evaluated by multiple object tracking precision and accuracy (MOTP and MOTA) metrics, for all the camera views and the results obtained under real-world coordinates. The experimental results demonstrate that crowd simulators boost the tracking performance significantly, especially for crowded scenes with higher density. In addition, a more realistic simulation strategy helps to further improve the overall tracking result
    corecore