7,039 research outputs found

    Smart Grid Technologies in Europe: An Overview

    Get PDF
    The old electricity network infrastructure has proven to be inadequate, with respect to modern challenges such as alternative energy sources, electricity demand and energy saving policies. Moreover, Information and Communication Technologies (ICT) seem to have reached an adequate level of reliability and flexibility in order to support a new concept of electricity networkā€”the smart grid. In this work, we will analyse the state-of-the-art of smart grids, in their technical, management, security, and optimization aspects. We will also provide a brief overview of the regulatory aspects involved in the development of a smart grid, mainly from the viewpoint of the European Unio

    A survey on cyber security for smart grid communications

    Get PDF
    A smart grid is a new form of electricity network with high fidelity power-flow control, self-healing, and energy reliability and energy security using digital communications and control technology. To upgrade an existing power grid into a smart grid, it requires significant dependence on intelligent and secure communication infrastructures. It requires security frameworks for distributed communications, pervasive computing and sensing technologies in smart grid. However, as many of the communication technologies currently recommended to use by a smart grid is vulnerable in cyber security, it could lead to unreliable system operations, causing unnecessary expenditure, even consequential disaster to both utilities and consumers. In this paper, we summarize the cyber security requirements and the possible vulnerabilities in smart grid communications and survey the current solutions on cyber security for smart grid communications. Ā© 2012 IEEE

    Smart Grid Security: Threats, Challenges, and Solutions

    Get PDF
    The cyber-physical nature of the smart grid has rendered it vulnerable to a multitude of attacks that can occur at its communication, networking, and physical entry points. Such cyber-physical attacks can have detrimental effects on the operation of the grid as exemplified by the recent attack which caused a blackout of the Ukranian power grid. Thus, to properly secure the smart grid, it is of utmost importance to: a) understand its underlying vulnerabilities and associated threats, b) quantify their effects, and c) devise appropriate security solutions. In this paper, the key threats targeting the smart grid are first exposed while assessing their effects on the operation and stability of the grid. Then, the challenges involved in understanding these attacks and devising defense strategies against them are identified. Potential solution approaches that can help mitigate these threats are then discussed. Last, a number of mathematical tools that can help in analyzing and implementing security solutions are introduced. As such, this paper will provide the first comprehensive overview on smart grid security

    Impact Assessment of Hypothesized Cyberattacks on Interconnected Bulk Power Systems

    Full text link
    The first-ever Ukraine cyberattack on power grid has proven its devastation by hacking into their critical cyber assets. With administrative privileges accessing substation networks/local control centers, one intelligent way of coordinated cyberattacks is to execute a series of disruptive switching executions on multiple substations using compromised supervisory control and data acquisition (SCADA) systems. These actions can cause significant impacts to an interconnected power grid. Unlike the previous power blackouts, such high-impact initiating events can aggravate operating conditions, initiating instability that may lead to system-wide cascading failure. A systemic evaluation of "nightmare" scenarios is highly desirable for asset owners to manage and prioritize the maintenance and investment in protecting their cyberinfrastructure. This survey paper is a conceptual expansion of real-time monitoring, anomaly detection, impact analyses, and mitigation (RAIM) framework that emphasizes on the resulting impacts, both on steady-state and dynamic aspects of power system stability. Hypothetically, we associate the combinatorial analyses of steady state on substations/components outages and dynamics of the sequential switching orders as part of the permutation. The expanded framework includes (1) critical/noncritical combination verification, (2) cascade confirmation, and (3) combination re-evaluation. This paper ends with a discussion of the open issues for metrics and future design pertaining the impact quantification of cyber-related contingencies

    Bad Data Injection Attack and Defense in Electricity Market using Game Theory Study

    Full text link
    Applications of cyber technologies improve the quality of monitoring and decision making in smart grid. These cyber technologies are vulnerable to malicious attacks, and compromising them can have serious technical and economical problems. This paper specifies the effect of compromising each measurement on the price of electricity, so that the attacker is able to change the prices in the desired direction (increasing or decreasing). Attacking and defending all measurements are impossible for the attacker and defender, respectively. This situation is modeled as a zero sum game between the attacker and defender. The game defines the proportion of times that the attacker and defender like to attack and defend different measurements, respectively. From the simulation results based on the PJM 5 Bus test system, we can show the effectiveness and properties of the studied game.Comment: To appear in IEEE Transactions on Smart Grid, Special Issue on Cyber, Physical, and System Security for Smart Gri

    On Cyber-Physical Security of Smart Grid: Data Integrity Attacks and Experiment Platform

    Get PDF
    A Smart Grid is a digitally enabled electric power grid that integrates the computation and communication technologies from cyber world with the sensors and actuators from physical world. Due to the system complexity, typically the high cohesion of communication and power system, the Smart Grid innovation introduces new and fundamentally different security vulnerabilities and risks. In this work, two important research aspects about cyber-physical security of Smart Grid are addressed: (i) The construction, impact and countermeasure of data integrity attacks; and (ii) The design and implementation of general cyber-physical security experiment platform. For data integrity attacks: based on the system model of state estimation process in Smart Grid, firstly, a data integrity attack model is formulated, such that the attackers can generate financial benefits from the real-time electrical market operations. Then, to reduce the required knowledge about the targeted power system when launching attacks, an online attack approach is proposed, such that the attacker is able to construct the desired attacks without the network information of power system. Furthermore, a network information attacking strategy is proposed, in which the most vulnerable meters can be directly identified and the desired measurement perturbations can be achieved by strategically manipulating the network information. Besides the attacking strategies, corresponding countermeasures based on the sparsity of attack vectors and robust state estimator are provided respectively. For the experiment platform: ScorePlus, a software-hardware hybrid and federated experiment environment for Smart Grid is presented. ScorePlus incorporates both software emulator and hardware testbed, such that they all follow the same architecture, and the same Smart Grid application program can be tested on either of them without any modification; ScorePlus provides a federated environment such that multiple software emulators and hardware testbeds at different locations are able to connect and form a unified Smart Grid system; ScorePlus software is encapsulated as a resource plugin in OpenStack cloud computing platform, such that it supports massive deployments with large scale test cases in cloud infrastructure
    • ā€¦
    corecore